Probabilistic set invariance and ultimate boundedness
- Autores
- Kofman, Ernesto Javier; De Doná, José A.; Serón, María Marta
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The notions of invariant sets and ultimate bounds are important concepts in the analysis of dynamical systems and very useful tools for the design of control systems. Several approaches have been reported for the characterisation of these sets, including constructive methods for their computation and procedures to obtain different approximations. However, there are shortcomings in those concepts, in the sense that no general probability distributions can be considered for the disturbances affecting the system (which, for example, precludes the assumption of Gaussian distributions insofar as they are not bounded). Motivated by those shortcomings, we propose in this paper the novel concepts of probabilistic ultimate bounds and probabilistic invariant sets, which extend the notions of invariant sets and ultimate bounds to consider 'containment in probability', and have the important feature of allowing stochastic noises with more general distributions, including the ubiquitous Gaussian distribution, to be considered. We introduce some key definitions for these sets, establish their main properties and develop methods for their computation. A numerical example illustrates the main ideas.
Fil: Kofman, Ernesto Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: De Doná, José A.. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. University of Newcastle; Reino Unido
Fil: Serón, María Marta. Universidad de Newcastle; Australia - Materia
-
INVARIANT SETS
LINEAR SYSTEMS
PROBABILISTIC METHODS
ULTIMATE BOUNDS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/186681
Ver los metadatos del registro completo
id |
CONICETDig_e3557e4658d072723ff90b6ec3d3eeb0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/186681 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Probabilistic set invariance and ultimate boundednessKofman, Ernesto JavierDe Doná, José A.Serón, María MartaINVARIANT SETSLINEAR SYSTEMSPROBABILISTIC METHODSULTIMATE BOUNDShttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2The notions of invariant sets and ultimate bounds are important concepts in the analysis of dynamical systems and very useful tools for the design of control systems. Several approaches have been reported for the characterisation of these sets, including constructive methods for their computation and procedures to obtain different approximations. However, there are shortcomings in those concepts, in the sense that no general probability distributions can be considered for the disturbances affecting the system (which, for example, precludes the assumption of Gaussian distributions insofar as they are not bounded). Motivated by those shortcomings, we propose in this paper the novel concepts of probabilistic ultimate bounds and probabilistic invariant sets, which extend the notions of invariant sets and ultimate bounds to consider 'containment in probability', and have the important feature of allowing stochastic noises with more general distributions, including the ubiquitous Gaussian distribution, to be considered. We introduce some key definitions for these sets, establish their main properties and develop methods for their computation. A numerical example illustrates the main ideas.Fil: Kofman, Ernesto Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: De Doná, José A.. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. University of Newcastle; Reino UnidoFil: Serón, María Marta. Universidad de Newcastle; AustraliaPergamon-Elsevier Science Ltd2012-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/186681Kofman, Ernesto Javier; De Doná, José A.; Serón, María Marta; Probabilistic set invariance and ultimate boundedness; Pergamon-Elsevier Science Ltd; Automatica; 48; 10; 10-2012; 2670-26760005-1098CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.automatica.2012.06.074info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0005109812003408info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:23:11Zoai:ri.conicet.gov.ar:11336/186681instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:23:11.656CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Probabilistic set invariance and ultimate boundedness |
title |
Probabilistic set invariance and ultimate boundedness |
spellingShingle |
Probabilistic set invariance and ultimate boundedness Kofman, Ernesto Javier INVARIANT SETS LINEAR SYSTEMS PROBABILISTIC METHODS ULTIMATE BOUNDS |
title_short |
Probabilistic set invariance and ultimate boundedness |
title_full |
Probabilistic set invariance and ultimate boundedness |
title_fullStr |
Probabilistic set invariance and ultimate boundedness |
title_full_unstemmed |
Probabilistic set invariance and ultimate boundedness |
title_sort |
Probabilistic set invariance and ultimate boundedness |
dc.creator.none.fl_str_mv |
Kofman, Ernesto Javier De Doná, José A. Serón, María Marta |
author |
Kofman, Ernesto Javier |
author_facet |
Kofman, Ernesto Javier De Doná, José A. Serón, María Marta |
author_role |
author |
author2 |
De Doná, José A. Serón, María Marta |
author2_role |
author author |
dc.subject.none.fl_str_mv |
INVARIANT SETS LINEAR SYSTEMS PROBABILISTIC METHODS ULTIMATE BOUNDS |
topic |
INVARIANT SETS LINEAR SYSTEMS PROBABILISTIC METHODS ULTIMATE BOUNDS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The notions of invariant sets and ultimate bounds are important concepts in the analysis of dynamical systems and very useful tools for the design of control systems. Several approaches have been reported for the characterisation of these sets, including constructive methods for their computation and procedures to obtain different approximations. However, there are shortcomings in those concepts, in the sense that no general probability distributions can be considered for the disturbances affecting the system (which, for example, precludes the assumption of Gaussian distributions insofar as they are not bounded). Motivated by those shortcomings, we propose in this paper the novel concepts of probabilistic ultimate bounds and probabilistic invariant sets, which extend the notions of invariant sets and ultimate bounds to consider 'containment in probability', and have the important feature of allowing stochastic noises with more general distributions, including the ubiquitous Gaussian distribution, to be considered. We introduce some key definitions for these sets, establish their main properties and develop methods for their computation. A numerical example illustrates the main ideas. Fil: Kofman, Ernesto Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: De Doná, José A.. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. University of Newcastle; Reino Unido Fil: Serón, María Marta. Universidad de Newcastle; Australia |
description |
The notions of invariant sets and ultimate bounds are important concepts in the analysis of dynamical systems and very useful tools for the design of control systems. Several approaches have been reported for the characterisation of these sets, including constructive methods for their computation and procedures to obtain different approximations. However, there are shortcomings in those concepts, in the sense that no general probability distributions can be considered for the disturbances affecting the system (which, for example, precludes the assumption of Gaussian distributions insofar as they are not bounded). Motivated by those shortcomings, we propose in this paper the novel concepts of probabilistic ultimate bounds and probabilistic invariant sets, which extend the notions of invariant sets and ultimate bounds to consider 'containment in probability', and have the important feature of allowing stochastic noises with more general distributions, including the ubiquitous Gaussian distribution, to be considered. We introduce some key definitions for these sets, establish their main properties and develop methods for their computation. A numerical example illustrates the main ideas. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/186681 Kofman, Ernesto Javier; De Doná, José A.; Serón, María Marta; Probabilistic set invariance and ultimate boundedness; Pergamon-Elsevier Science Ltd; Automatica; 48; 10; 10-2012; 2670-2676 0005-1098 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/186681 |
identifier_str_mv |
Kofman, Ernesto Javier; De Doná, José A.; Serón, María Marta; Probabilistic set invariance and ultimate boundedness; Pergamon-Elsevier Science Ltd; Automatica; 48; 10; 10-2012; 2670-2676 0005-1098 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.automatica.2012.06.074 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0005109812003408 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981279532843008 |
score |
12.48226 |