On Morita equivalence for simple Generalized Weyl algebras

Autores
Richard, Lionel; Solotar, Andrea Leonor
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We give a necessary condition for Morita equivalence of simple Generalized Weyl algebras of classical type. We propose a reformulation of Hodges’ result, which describes Morita equivalences in case the polynomial defining the Generalized Weyl algebra has degree 2, in terms of isomorphisms of quantum tori, inspired by similar considerations in noncommutative differential geometry. We study how far this link can be generalized for n ≥ 3.
Fil: Richard, Lionel. University of Edinburgh; Reino Unido
Fil: Solotar, Andrea Leonor. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
Morita
Kleinian Singularites
Quantum Tori
Hattori-Bass Trace
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/15084

id CONICETDig_9da5b6b8988e077c07520bc78ed858fd
oai_identifier_str oai:ri.conicet.gov.ar:11336/15084
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On Morita equivalence for simple Generalized Weyl algebrasRichard, LionelSolotar, Andrea LeonorMoritaKleinian SingularitesQuantum ToriHattori-Bass Tracehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We give a necessary condition for Morita equivalence of simple Generalized Weyl algebras of classical type. We propose a reformulation of Hodges’ result, which describes Morita equivalences in case the polynomial defining the Generalized Weyl algebra has degree 2, in terms of isomorphisms of quantum tori, inspired by similar considerations in noncommutative differential geometry. We study how far this link can be generalized for n ≥ 3.Fil: Richard, Lionel. University of Edinburgh; Reino UnidoFil: Solotar, Andrea Leonor. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSpringer2010-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15084Richard, Lionel; Solotar, Andrea Leonor; On Morita equivalence for simple Generalized Weyl algebras; Springer; Algebras And Representation Theory; 13; 5; 10-2010; 589-6051386-923Xenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10468-009-9138-5info:eu-repo/semantics/altIdentifier/doi/10.1007/s10468-009-9138-5info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:02Zoai:ri.conicet.gov.ar:11336/15084instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:03.023CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On Morita equivalence for simple Generalized Weyl algebras
title On Morita equivalence for simple Generalized Weyl algebras
spellingShingle On Morita equivalence for simple Generalized Weyl algebras
Richard, Lionel
Morita
Kleinian Singularites
Quantum Tori
Hattori-Bass Trace
title_short On Morita equivalence for simple Generalized Weyl algebras
title_full On Morita equivalence for simple Generalized Weyl algebras
title_fullStr On Morita equivalence for simple Generalized Weyl algebras
title_full_unstemmed On Morita equivalence for simple Generalized Weyl algebras
title_sort On Morita equivalence for simple Generalized Weyl algebras
dc.creator.none.fl_str_mv Richard, Lionel
Solotar, Andrea Leonor
author Richard, Lionel
author_facet Richard, Lionel
Solotar, Andrea Leonor
author_role author
author2 Solotar, Andrea Leonor
author2_role author
dc.subject.none.fl_str_mv Morita
Kleinian Singularites
Quantum Tori
Hattori-Bass Trace
topic Morita
Kleinian Singularites
Quantum Tori
Hattori-Bass Trace
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We give a necessary condition for Morita equivalence of simple Generalized Weyl algebras of classical type. We propose a reformulation of Hodges’ result, which describes Morita equivalences in case the polynomial defining the Generalized Weyl algebra has degree 2, in terms of isomorphisms of quantum tori, inspired by similar considerations in noncommutative differential geometry. We study how far this link can be generalized for n ≥ 3.
Fil: Richard, Lionel. University of Edinburgh; Reino Unido
Fil: Solotar, Andrea Leonor. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description We give a necessary condition for Morita equivalence of simple Generalized Weyl algebras of classical type. We propose a reformulation of Hodges’ result, which describes Morita equivalences in case the polynomial defining the Generalized Weyl algebra has degree 2, in terms of isomorphisms of quantum tori, inspired by similar considerations in noncommutative differential geometry. We study how far this link can be generalized for n ≥ 3.
publishDate 2010
dc.date.none.fl_str_mv 2010-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/15084
Richard, Lionel; Solotar, Andrea Leonor; On Morita equivalence for simple Generalized Weyl algebras; Springer; Algebras And Representation Theory; 13; 5; 10-2010; 589-605
1386-923X
url http://hdl.handle.net/11336/15084
identifier_str_mv Richard, Lionel; Solotar, Andrea Leonor; On Morita equivalence for simple Generalized Weyl algebras; Springer; Algebras And Representation Theory; 13; 5; 10-2010; 589-605
1386-923X
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10468-009-9138-5
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10468-009-9138-5
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269380254105600
score 13.13397