On Morita equivalence for simple Generalized Weyl algebras
- Autores
- Richard, Lionel; Solotar, Andrea Leonor
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We give a necessary condition for Morita equivalence of simple Generalized Weyl algebras of classical type. We propose a reformulation of Hodges’ result, which describes Morita equivalences in case the polynomial defining the Generalized Weyl algebra has degree 2, in terms of isomorphisms of quantum tori, inspired by similar considerations in noncommutative differential geometry. We study how far this link can be generalized for n ≥ 3.
Fil: Richard, Lionel. University of Edinburgh; Reino Unido
Fil: Solotar, Andrea Leonor. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Morita
Kleinian Singularites
Quantum Tori
Hattori-Bass Trace - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/15084
Ver los metadatos del registro completo
id |
CONICETDig_9da5b6b8988e077c07520bc78ed858fd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/15084 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On Morita equivalence for simple Generalized Weyl algebrasRichard, LionelSolotar, Andrea LeonorMoritaKleinian SingularitesQuantum ToriHattori-Bass Tracehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We give a necessary condition for Morita equivalence of simple Generalized Weyl algebras of classical type. We propose a reformulation of Hodges’ result, which describes Morita equivalences in case the polynomial defining the Generalized Weyl algebra has degree 2, in terms of isomorphisms of quantum tori, inspired by similar considerations in noncommutative differential geometry. We study how far this link can be generalized for n ≥ 3.Fil: Richard, Lionel. University of Edinburgh; Reino UnidoFil: Solotar, Andrea Leonor. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSpringer2010-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15084Richard, Lionel; Solotar, Andrea Leonor; On Morita equivalence for simple Generalized Weyl algebras; Springer; Algebras And Representation Theory; 13; 5; 10-2010; 589-6051386-923Xenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10468-009-9138-5info:eu-repo/semantics/altIdentifier/doi/10.1007/s10468-009-9138-5info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:02Zoai:ri.conicet.gov.ar:11336/15084instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:03.023CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On Morita equivalence for simple Generalized Weyl algebras |
title |
On Morita equivalence for simple Generalized Weyl algebras |
spellingShingle |
On Morita equivalence for simple Generalized Weyl algebras Richard, Lionel Morita Kleinian Singularites Quantum Tori Hattori-Bass Trace |
title_short |
On Morita equivalence for simple Generalized Weyl algebras |
title_full |
On Morita equivalence for simple Generalized Weyl algebras |
title_fullStr |
On Morita equivalence for simple Generalized Weyl algebras |
title_full_unstemmed |
On Morita equivalence for simple Generalized Weyl algebras |
title_sort |
On Morita equivalence for simple Generalized Weyl algebras |
dc.creator.none.fl_str_mv |
Richard, Lionel Solotar, Andrea Leonor |
author |
Richard, Lionel |
author_facet |
Richard, Lionel Solotar, Andrea Leonor |
author_role |
author |
author2 |
Solotar, Andrea Leonor |
author2_role |
author |
dc.subject.none.fl_str_mv |
Morita Kleinian Singularites Quantum Tori Hattori-Bass Trace |
topic |
Morita Kleinian Singularites Quantum Tori Hattori-Bass Trace |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We give a necessary condition for Morita equivalence of simple Generalized Weyl algebras of classical type. We propose a reformulation of Hodges’ result, which describes Morita equivalences in case the polynomial defining the Generalized Weyl algebra has degree 2, in terms of isomorphisms of quantum tori, inspired by similar considerations in noncommutative differential geometry. We study how far this link can be generalized for n ≥ 3. Fil: Richard, Lionel. University of Edinburgh; Reino Unido Fil: Solotar, Andrea Leonor. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We give a necessary condition for Morita equivalence of simple Generalized Weyl algebras of classical type. We propose a reformulation of Hodges’ result, which describes Morita equivalences in case the polynomial defining the Generalized Weyl algebra has degree 2, in terms of isomorphisms of quantum tori, inspired by similar considerations in noncommutative differential geometry. We study how far this link can be generalized for n ≥ 3. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/15084 Richard, Lionel; Solotar, Andrea Leonor; On Morita equivalence for simple Generalized Weyl algebras; Springer; Algebras And Representation Theory; 13; 5; 10-2010; 589-605 1386-923X |
url |
http://hdl.handle.net/11336/15084 |
identifier_str_mv |
Richard, Lionel; Solotar, Andrea Leonor; On Morita equivalence for simple Generalized Weyl algebras; Springer; Algebras And Representation Theory; 13; 5; 10-2010; 589-605 1386-923X |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10468-009-9138-5 info:eu-repo/semantics/altIdentifier/doi/10.1007/s10468-009-9138-5 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269380254105600 |
score |
13.13397 |