The Weyl law for contractive maps
- Autores
- Spina, Maria Elena; Rivas, Alejandro Mariano Fidel; Carlo, Gabriel Gustavo
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We find an empirical Weyl law followed by the eigenvalues of contractive maps. An important property is that it is mainly insensitive to the dimension of the corresponding invariant classical set, the strange attractor. The usual explanation for the fractal Weyl law emergence in scattering systems (i.e., having a projective opening) is based on the classical phase space distributions evolved up to the quantum to classical correspondence (Ehrenfest) time. In the contractive case this reasoning fails to describe it. Instead, we conjecture that the support for this behavior is essentially given by the strong non-orthogonality of the eigenvectors of the contractive superoperator. We test the validity of the Weyl law and this conjecture on two paradigmatic systems, the dissipative baker and kicked top maps.
Fil: Spina, Maria Elena. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes. Departamento de Física; Argentina
Fil: Rivas, Alejandro Mariano Fidel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes. Departamento de Física; Argentina
Fil: Carlo, Gabriel Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes. Departamento de Física; Argentina - Materia
-
Quantum Maps
Quantum Dissipation
Weyl Law - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/26597
Ver los metadatos del registro completo
id |
CONICETDig_aeb8ebe3c7a400992a3f2530a50d164c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/26597 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The Weyl law for contractive mapsSpina, Maria ElenaRivas, Alejandro Mariano FidelCarlo, Gabriel GustavoQuantum MapsQuantum DissipationWeyl Lawhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We find an empirical Weyl law followed by the eigenvalues of contractive maps. An important property is that it is mainly insensitive to the dimension of the corresponding invariant classical set, the strange attractor. The usual explanation for the fractal Weyl law emergence in scattering systems (i.e., having a projective opening) is based on the classical phase space distributions evolved up to the quantum to classical correspondence (Ehrenfest) time. In the contractive case this reasoning fails to describe it. Instead, we conjecture that the support for this behavior is essentially given by the strong non-orthogonality of the eigenvectors of the contractive superoperator. We test the validity of the Weyl law and this conjecture on two paradigmatic systems, the dissipative baker and kicked top maps.Fil: Spina, Maria Elena. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes. Departamento de Física; ArgentinaFil: Rivas, Alejandro Mariano Fidel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes. Departamento de Física; ArgentinaFil: Carlo, Gabriel Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes. Departamento de Física; ArgentinaIOP Publishing2013-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/26597Spina, Maria Elena; Rivas, Alejandro Mariano Fidel; Carlo, Gabriel Gustavo; The Weyl law for contractive maps; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 46; 11-2013; 475101-4751131751-81131751-8121CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1751-8113/46/47/475101info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/46/47/475101info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1303.3462info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:05:44Zoai:ri.conicet.gov.ar:11336/26597instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:05:45.045CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The Weyl law for contractive maps |
title |
The Weyl law for contractive maps |
spellingShingle |
The Weyl law for contractive maps Spina, Maria Elena Quantum Maps Quantum Dissipation Weyl Law |
title_short |
The Weyl law for contractive maps |
title_full |
The Weyl law for contractive maps |
title_fullStr |
The Weyl law for contractive maps |
title_full_unstemmed |
The Weyl law for contractive maps |
title_sort |
The Weyl law for contractive maps |
dc.creator.none.fl_str_mv |
Spina, Maria Elena Rivas, Alejandro Mariano Fidel Carlo, Gabriel Gustavo |
author |
Spina, Maria Elena |
author_facet |
Spina, Maria Elena Rivas, Alejandro Mariano Fidel Carlo, Gabriel Gustavo |
author_role |
author |
author2 |
Rivas, Alejandro Mariano Fidel Carlo, Gabriel Gustavo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Quantum Maps Quantum Dissipation Weyl Law |
topic |
Quantum Maps Quantum Dissipation Weyl Law |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We find an empirical Weyl law followed by the eigenvalues of contractive maps. An important property is that it is mainly insensitive to the dimension of the corresponding invariant classical set, the strange attractor. The usual explanation for the fractal Weyl law emergence in scattering systems (i.e., having a projective opening) is based on the classical phase space distributions evolved up to the quantum to classical correspondence (Ehrenfest) time. In the contractive case this reasoning fails to describe it. Instead, we conjecture that the support for this behavior is essentially given by the strong non-orthogonality of the eigenvectors of the contractive superoperator. We test the validity of the Weyl law and this conjecture on two paradigmatic systems, the dissipative baker and kicked top maps. Fil: Spina, Maria Elena. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes. Departamento de Física; Argentina Fil: Rivas, Alejandro Mariano Fidel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes. Departamento de Física; Argentina Fil: Carlo, Gabriel Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes. Departamento de Física; Argentina |
description |
We find an empirical Weyl law followed by the eigenvalues of contractive maps. An important property is that it is mainly insensitive to the dimension of the corresponding invariant classical set, the strange attractor. The usual explanation for the fractal Weyl law emergence in scattering systems (i.e., having a projective opening) is based on the classical phase space distributions evolved up to the quantum to classical correspondence (Ehrenfest) time. In the contractive case this reasoning fails to describe it. Instead, we conjecture that the support for this behavior is essentially given by the strong non-orthogonality of the eigenvectors of the contractive superoperator. We test the validity of the Weyl law and this conjecture on two paradigmatic systems, the dissipative baker and kicked top maps. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/26597 Spina, Maria Elena; Rivas, Alejandro Mariano Fidel; Carlo, Gabriel Gustavo; The Weyl law for contractive maps; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 46; 11-2013; 475101-475113 1751-8113 1751-8121 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/26597 |
identifier_str_mv |
Spina, Maria Elena; Rivas, Alejandro Mariano Fidel; Carlo, Gabriel Gustavo; The Weyl law for contractive maps; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 46; 11-2013; 475101-475113 1751-8113 1751-8121 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1751-8113/46/47/475101 info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/46/47/475101 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1303.3462 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980220287582208 |
score |
12.993085 |