The cohomology of lattices in sl(2, c)
- Autores
- Finis, Tobias; Grunewald, Fritz; Tirao, Paulo Andres
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper contains both theoretical results and experimental data on the behavior of the dimensions of the cohomology spaces H1(Γ, En), where Γ is a lattice in SL(2,ℂ) and (Formula Presented), n ∈ ℕ ∪ {0}, is one of the standard selfdual modules. In the case Γ = SL(2, O) for the ring of integers O in an imaginary quadratic number field, we make the theory of lifting explicit and obtain lower bounds linear in n. We present a large amount of experimental data for this case, as well as for some geometrically constructed and mostly nonarithmetic groups. The computations for SL(2, O) lead us to discover two instances with nonlifted classes in the cohomology. We also derive an upper bound of size O(n2/log n) for any fixed lattice Γ in the general case. We discuss a number of new questions and conjectures suggested by our results and our experimental data. © A K Peters, Ltd.
Fil: Finis, Tobias. Heinrich-Heine-Universität. Mathematisches Institut; Alemania
Fil: Grunewald, Fritz. Heinrich-Heine-Universität. Mathematisches Institut; Alemania
Fil: Tirao, Paulo Andres. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
AUTOMORPHIC FORMS
COHOMOLOGY OF ARITHMETIC GROUPS
KLEINIAN GROUPS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/189127
Ver los metadatos del registro completo
id |
CONICETDig_4a12ffe7b318edf6762f615d13f8f9f7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/189127 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The cohomology of lattices in sl(2, c)Finis, TobiasGrunewald, FritzTirao, Paulo AndresAUTOMORPHIC FORMSCOHOMOLOGY OF ARITHMETIC GROUPSKLEINIAN GROUPShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This paper contains both theoretical results and experimental data on the behavior of the dimensions of the cohomology spaces H1(Γ, En), where Γ is a lattice in SL(2,ℂ) and (Formula Presented), n ∈ ℕ ∪ {0}, is one of the standard selfdual modules. In the case Γ = SL(2, O) for the ring of integers O in an imaginary quadratic number field, we make the theory of lifting explicit and obtain lower bounds linear in n. We present a large amount of experimental data for this case, as well as for some geometrically constructed and mostly nonarithmetic groups. The computations for SL(2, O) lead us to discover two instances with nonlifted classes in the cohomology. We also derive an upper bound of size O(n2/log n) for any fixed lattice Γ in the general case. We discuss a number of new questions and conjectures suggested by our results and our experimental data. © A K Peters, Ltd.Fil: Finis, Tobias. Heinrich-Heine-Universität. Mathematisches Institut; AlemaniaFil: Grunewald, Fritz. Heinrich-Heine-Universität. Mathematisches Institut; AlemaniaFil: Tirao, Paulo Andres. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaTaylor & Francis2011-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/189127Finis, Tobias; Grunewald, Fritz; Tirao, Paulo Andres; The cohomology of lattices in sl(2, c); Taylor & Francis; Experimental Mathematics; 19; 1; 1-2011; 29-631058-64581944-950XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/10586458.2010.10129067info:eu-repo/semantics/altIdentifier/doi/10.1080/10586458.2010.10129067info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:01Zoai:ri.conicet.gov.ar:11336/189127instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:46:02.008CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The cohomology of lattices in sl(2, c) |
title |
The cohomology of lattices in sl(2, c) |
spellingShingle |
The cohomology of lattices in sl(2, c) Finis, Tobias AUTOMORPHIC FORMS COHOMOLOGY OF ARITHMETIC GROUPS KLEINIAN GROUPS |
title_short |
The cohomology of lattices in sl(2, c) |
title_full |
The cohomology of lattices in sl(2, c) |
title_fullStr |
The cohomology of lattices in sl(2, c) |
title_full_unstemmed |
The cohomology of lattices in sl(2, c) |
title_sort |
The cohomology of lattices in sl(2, c) |
dc.creator.none.fl_str_mv |
Finis, Tobias Grunewald, Fritz Tirao, Paulo Andres |
author |
Finis, Tobias |
author_facet |
Finis, Tobias Grunewald, Fritz Tirao, Paulo Andres |
author_role |
author |
author2 |
Grunewald, Fritz Tirao, Paulo Andres |
author2_role |
author author |
dc.subject.none.fl_str_mv |
AUTOMORPHIC FORMS COHOMOLOGY OF ARITHMETIC GROUPS KLEINIAN GROUPS |
topic |
AUTOMORPHIC FORMS COHOMOLOGY OF ARITHMETIC GROUPS KLEINIAN GROUPS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This paper contains both theoretical results and experimental data on the behavior of the dimensions of the cohomology spaces H1(Γ, En), where Γ is a lattice in SL(2,ℂ) and (Formula Presented), n ∈ ℕ ∪ {0}, is one of the standard selfdual modules. In the case Γ = SL(2, O) for the ring of integers O in an imaginary quadratic number field, we make the theory of lifting explicit and obtain lower bounds linear in n. We present a large amount of experimental data for this case, as well as for some geometrically constructed and mostly nonarithmetic groups. The computations for SL(2, O) lead us to discover two instances with nonlifted classes in the cohomology. We also derive an upper bound of size O(n2/log n) for any fixed lattice Γ in the general case. We discuss a number of new questions and conjectures suggested by our results and our experimental data. © A K Peters, Ltd. Fil: Finis, Tobias. Heinrich-Heine-Universität. Mathematisches Institut; Alemania Fil: Grunewald, Fritz. Heinrich-Heine-Universität. Mathematisches Institut; Alemania Fil: Tirao, Paulo Andres. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
This paper contains both theoretical results and experimental data on the behavior of the dimensions of the cohomology spaces H1(Γ, En), where Γ is a lattice in SL(2,ℂ) and (Formula Presented), n ∈ ℕ ∪ {0}, is one of the standard selfdual modules. In the case Γ = SL(2, O) for the ring of integers O in an imaginary quadratic number field, we make the theory of lifting explicit and obtain lower bounds linear in n. We present a large amount of experimental data for this case, as well as for some geometrically constructed and mostly nonarithmetic groups. The computations for SL(2, O) lead us to discover two instances with nonlifted classes in the cohomology. We also derive an upper bound of size O(n2/log n) for any fixed lattice Γ in the general case. We discuss a number of new questions and conjectures suggested by our results and our experimental data. © A K Peters, Ltd. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/189127 Finis, Tobias; Grunewald, Fritz; Tirao, Paulo Andres; The cohomology of lattices in sl(2, c); Taylor & Francis; Experimental Mathematics; 19; 1; 1-2011; 29-63 1058-6458 1944-950X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/189127 |
identifier_str_mv |
Finis, Tobias; Grunewald, Fritz; Tirao, Paulo Andres; The cohomology of lattices in sl(2, c); Taylor & Francis; Experimental Mathematics; 19; 1; 1-2011; 29-63 1058-6458 1944-950X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/10586458.2010.10129067 info:eu-repo/semantics/altIdentifier/doi/10.1080/10586458.2010.10129067 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268769075855360 |
score |
13.13397 |