On Bessel-Riesz operators

Autores
Cerutti, Rubén Alejandro
Año de publicación
2007
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Cerutti, Rubén Alejandro. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.
This article deals with certain kind of potential operator defined as convolution with the generalized function Wα (P ± i0,m,n)depending on a complex parameter α and a real non negative one m. The definitory formulae and several properties of the family {W (P ± i m n)} α∈C α 0, , α; have been introduced and studied by Trione (see [14]) specially the important followings two: a) Wα ∗Wβ =Wα+β , α and β complex numbers, and b) k W −2 is a fundamental solution of the k-times iterated Klein-Gordon operator Writing Wα (P ± i0,m,n) as an infinite linear combination of the ultrahyperbolic Riesz kernel of different orders Rα (P ± i0)which is a causal (anticausal) elementary solution of the ultrahyperbolic differential operator and taking into account its Fourier transform it is possible to evaluate the Fourier transform of the kernel Wα (P ± i0,m,n). We prove the composition formula Wα ∗Wβϕ =Wα+βϕ for a sufficiently good function. The proof of this result is based on the composition formulae presented by Trione in [14], but we also present a different way. Other simple property studied is the one that establish the relationship between the ultrahyperbolic Klein-Gordon operator and the Wα Bessel-Riesz operator. Finally we obtain an expression that will be consider a fractional power of the Klein-Gordon operator.
Fuente
FACENA, 2007, vol. 23, p. 17-27.
Materia
Bessel-Riesz potentials
Fractional derivative
Hypersingular integral
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
Institución
Universidad Nacional del Nordeste
OAI Identificador
oai:repositorio.unne.edu.ar:123456789/51668

id RIUNNE_ab625e87f1ba37c37cbe60b65bef9e12
oai_identifier_str oai:repositorio.unne.edu.ar:123456789/51668
network_acronym_str RIUNNE
repository_id_str 4871
network_name_str Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
spelling On Bessel-Riesz operatorsCerutti, Rubén AlejandroBessel-Riesz potentialsFractional derivativeHypersingular integralFil: Cerutti, Rubén Alejandro. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.This article deals with certain kind of potential operator defined as convolution with the generalized function Wα (P ± i0,m,n)depending on a complex parameter α and a real non negative one m. The definitory formulae and several properties of the family {W (P ± i m n)} α∈C α 0, , α; have been introduced and studied by Trione (see [14]) specially the important followings two: a) Wα ∗Wβ =Wα+β , α and β complex numbers, and b) k W −2 is a fundamental solution of the k-times iterated Klein-Gordon operator Writing Wα (P ± i0,m,n) as an infinite linear combination of the ultrahyperbolic Riesz kernel of different orders Rα (P ± i0)which is a causal (anticausal) elementary solution of the ultrahyperbolic differential operator and taking into account its Fourier transform it is possible to evaluate the Fourier transform of the kernel Wα (P ± i0,m,n). We prove the composition formula Wα ∗Wβϕ =Wα+βϕ for a sufficiently good function. The proof of this result is based on the composition formulae presented by Trione in [14], but we also present a different way. Other simple property studied is the one that establish the relationship between the ultrahyperbolic Klein-Gordon operator and the Wα Bessel-Riesz operator. Finally we obtain an expression that will be consider a fractional power of the Klein-Gordon operator.Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura2007info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfp. 17-27application/pdfCerutti, Rubén, 2007. On Bessel-Riesz operators. FACENA. Corrientes: Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura, vol. 23, p. 17-27. ISSN 1851-507X.1851-507Xhttp://repositorio.unne.edu.ar/handle/123456789/51668FACENA, 2007, vol. 23, p. 17-27.reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)instname:Universidad Nacional del Nordestespainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/ar/Atribución-NoComercial-SinDerivadas 2.5 Argentina2025-09-18T10:49:10Zoai:repositorio.unne.edu.ar:123456789/51668instacron:UNNEInstitucionalhttp://repositorio.unne.edu.ar/Universidad públicaNo correspondehttp://repositorio.unne.edu.ar/oaiososa@bib.unne.edu.ar;sergio.alegria@unne.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:48712025-09-18 10:49:10.618Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordestefalse
dc.title.none.fl_str_mv On Bessel-Riesz operators
title On Bessel-Riesz operators
spellingShingle On Bessel-Riesz operators
Cerutti, Rubén Alejandro
Bessel-Riesz potentials
Fractional derivative
Hypersingular integral
title_short On Bessel-Riesz operators
title_full On Bessel-Riesz operators
title_fullStr On Bessel-Riesz operators
title_full_unstemmed On Bessel-Riesz operators
title_sort On Bessel-Riesz operators
dc.creator.none.fl_str_mv Cerutti, Rubén Alejandro
author Cerutti, Rubén Alejandro
author_facet Cerutti, Rubén Alejandro
author_role author
dc.subject.none.fl_str_mv Bessel-Riesz potentials
Fractional derivative
Hypersingular integral
topic Bessel-Riesz potentials
Fractional derivative
Hypersingular integral
dc.description.none.fl_txt_mv Fil: Cerutti, Rubén Alejandro. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.
This article deals with certain kind of potential operator defined as convolution with the generalized function Wα (P ± i0,m,n)depending on a complex parameter α and a real non negative one m. The definitory formulae and several properties of the family {W (P ± i m n)} α∈C α 0, , α; have been introduced and studied by Trione (see [14]) specially the important followings two: a) Wα ∗Wβ =Wα+β , α and β complex numbers, and b) k W −2 is a fundamental solution of the k-times iterated Klein-Gordon operator Writing Wα (P ± i0,m,n) as an infinite linear combination of the ultrahyperbolic Riesz kernel of different orders Rα (P ± i0)which is a causal (anticausal) elementary solution of the ultrahyperbolic differential operator and taking into account its Fourier transform it is possible to evaluate the Fourier transform of the kernel Wα (P ± i0,m,n). We prove the composition formula Wα ∗Wβϕ =Wα+βϕ for a sufficiently good function. The proof of this result is based on the composition formulae presented by Trione in [14], but we also present a different way. Other simple property studied is the one that establish the relationship between the ultrahyperbolic Klein-Gordon operator and the Wα Bessel-Riesz operator. Finally we obtain an expression that will be consider a fractional power of the Klein-Gordon operator.
description Fil: Cerutti, Rubén Alejandro. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.
publishDate 2007
dc.date.none.fl_str_mv 2007
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv Cerutti, Rubén, 2007. On Bessel-Riesz operators. FACENA. Corrientes: Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura, vol. 23, p. 17-27. ISSN 1851-507X.
1851-507X
http://repositorio.unne.edu.ar/handle/123456789/51668
identifier_str_mv Cerutti, Rubén, 2007. On Bessel-Riesz operators. FACENA. Corrientes: Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura, vol. 23, p. 17-27. ISSN 1851-507X.
1851-507X
url http://repositorio.unne.edu.ar/handle/123456789/51668
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Atribución-NoComercial-SinDerivadas 2.5 Argentina
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Atribución-NoComercial-SinDerivadas 2.5 Argentina
dc.format.none.fl_str_mv application/pdf
p. 17-27
application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura
publisher.none.fl_str_mv Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura
dc.source.none.fl_str_mv FACENA, 2007, vol. 23, p. 17-27.
reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
instname:Universidad Nacional del Nordeste
reponame_str Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
collection Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
instname_str Universidad Nacional del Nordeste
repository.name.fl_str_mv Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordeste
repository.mail.fl_str_mv ososa@bib.unne.edu.ar;sergio.alegria@unne.edu.ar
_version_ 1843612108526190592
score 12.490522