On Bessel-Riesz operators
- Autores
- Cerutti, Rubén Alejandro
- Año de publicación
- 2007
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Cerutti, Rubén Alejandro. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.
This article deals with certain kind of potential operator defined as convolution with the generalized function Wα (P ± i0,m,n)depending on a complex parameter α and a real non negative one m. The definitory formulae and several properties of the family {W (P ± i m n)} α∈C α 0, , α; have been introduced and studied by Trione (see [14]) specially the important followings two: a) Wα ∗Wβ =Wα+β , α and β complex numbers, and b) k W −2 is a fundamental solution of the k-times iterated Klein-Gordon operator Writing Wα (P ± i0,m,n) as an infinite linear combination of the ultrahyperbolic Riesz kernel of different orders Rα (P ± i0)which is a causal (anticausal) elementary solution of the ultrahyperbolic differential operator and taking into account its Fourier transform it is possible to evaluate the Fourier transform of the kernel Wα (P ± i0,m,n). We prove the composition formula Wα ∗Wβϕ =Wα+βϕ for a sufficiently good function. The proof of this result is based on the composition formulae presented by Trione in [14], but we also present a different way. Other simple property studied is the one that establish the relationship between the ultrahyperbolic Klein-Gordon operator and the Wα Bessel-Riesz operator. Finally we obtain an expression that will be consider a fractional power of the Klein-Gordon operator. - Fuente
- FACENA, 2007, vol. 23, p. 17-27.
- Materia
-
Bessel-Riesz potentials
Fractional derivative
Hypersingular integral - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional del Nordeste
- OAI Identificador
- oai:repositorio.unne.edu.ar:123456789/51668
Ver los metadatos del registro completo
id |
RIUNNE_ab625e87f1ba37c37cbe60b65bef9e12 |
---|---|
oai_identifier_str |
oai:repositorio.unne.edu.ar:123456789/51668 |
network_acronym_str |
RIUNNE |
repository_id_str |
4871 |
network_name_str |
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) |
spelling |
On Bessel-Riesz operatorsCerutti, Rubén AlejandroBessel-Riesz potentialsFractional derivativeHypersingular integralFil: Cerutti, Rubén Alejandro. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.This article deals with certain kind of potential operator defined as convolution with the generalized function Wα (P ± i0,m,n)depending on a complex parameter α and a real non negative one m. The definitory formulae and several properties of the family {W (P ± i m n)} α∈C α 0, , α; have been introduced and studied by Trione (see [14]) specially the important followings two: a) Wα ∗Wβ =Wα+β , α and β complex numbers, and b) k W −2 is a fundamental solution of the k-times iterated Klein-Gordon operator Writing Wα (P ± i0,m,n) as an infinite linear combination of the ultrahyperbolic Riesz kernel of different orders Rα (P ± i0)which is a causal (anticausal) elementary solution of the ultrahyperbolic differential operator and taking into account its Fourier transform it is possible to evaluate the Fourier transform of the kernel Wα (P ± i0,m,n). We prove the composition formula Wα ∗Wβϕ =Wα+βϕ for a sufficiently good function. The proof of this result is based on the composition formulae presented by Trione in [14], but we also present a different way. Other simple property studied is the one that establish the relationship between the ultrahyperbolic Klein-Gordon operator and the Wα Bessel-Riesz operator. Finally we obtain an expression that will be consider a fractional power of the Klein-Gordon operator.Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura2007info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfp. 17-27application/pdfCerutti, Rubén, 2007. On Bessel-Riesz operators. FACENA. Corrientes: Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura, vol. 23, p. 17-27. ISSN 1851-507X.1851-507Xhttp://repositorio.unne.edu.ar/handle/123456789/51668FACENA, 2007, vol. 23, p. 17-27.reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)instname:Universidad Nacional del Nordestespainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/ar/Atribución-NoComercial-SinDerivadas 2.5 Argentina2025-09-18T10:49:10Zoai:repositorio.unne.edu.ar:123456789/51668instacron:UNNEInstitucionalhttp://repositorio.unne.edu.ar/Universidad públicaNo correspondehttp://repositorio.unne.edu.ar/oaiososa@bib.unne.edu.ar;sergio.alegria@unne.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:48712025-09-18 10:49:10.618Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordestefalse |
dc.title.none.fl_str_mv |
On Bessel-Riesz operators |
title |
On Bessel-Riesz operators |
spellingShingle |
On Bessel-Riesz operators Cerutti, Rubén Alejandro Bessel-Riesz potentials Fractional derivative Hypersingular integral |
title_short |
On Bessel-Riesz operators |
title_full |
On Bessel-Riesz operators |
title_fullStr |
On Bessel-Riesz operators |
title_full_unstemmed |
On Bessel-Riesz operators |
title_sort |
On Bessel-Riesz operators |
dc.creator.none.fl_str_mv |
Cerutti, Rubén Alejandro |
author |
Cerutti, Rubén Alejandro |
author_facet |
Cerutti, Rubén Alejandro |
author_role |
author |
dc.subject.none.fl_str_mv |
Bessel-Riesz potentials Fractional derivative Hypersingular integral |
topic |
Bessel-Riesz potentials Fractional derivative Hypersingular integral |
dc.description.none.fl_txt_mv |
Fil: Cerutti, Rubén Alejandro. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina. This article deals with certain kind of potential operator defined as convolution with the generalized function Wα (P ± i0,m,n)depending on a complex parameter α and a real non negative one m. The definitory formulae and several properties of the family {W (P ± i m n)} α∈C α 0, , α; have been introduced and studied by Trione (see [14]) specially the important followings two: a) Wα ∗Wβ =Wα+β , α and β complex numbers, and b) k W −2 is a fundamental solution of the k-times iterated Klein-Gordon operator Writing Wα (P ± i0,m,n) as an infinite linear combination of the ultrahyperbolic Riesz kernel of different orders Rα (P ± i0)which is a causal (anticausal) elementary solution of the ultrahyperbolic differential operator and taking into account its Fourier transform it is possible to evaluate the Fourier transform of the kernel Wα (P ± i0,m,n). We prove the composition formula Wα ∗Wβϕ =Wα+βϕ for a sufficiently good function. The proof of this result is based on the composition formulae presented by Trione in [14], but we also present a different way. Other simple property studied is the one that establish the relationship between the ultrahyperbolic Klein-Gordon operator and the Wα Bessel-Riesz operator. Finally we obtain an expression that will be consider a fractional power of the Klein-Gordon operator. |
description |
Fil: Cerutti, Rubén Alejandro. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
Cerutti, Rubén, 2007. On Bessel-Riesz operators. FACENA. Corrientes: Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura, vol. 23, p. 17-27. ISSN 1851-507X. 1851-507X http://repositorio.unne.edu.ar/handle/123456789/51668 |
identifier_str_mv |
Cerutti, Rubén, 2007. On Bessel-Riesz operators. FACENA. Corrientes: Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura, vol. 23, p. 17-27. ISSN 1851-507X. 1851-507X |
url |
http://repositorio.unne.edu.ar/handle/123456789/51668 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/2.5/ar/ Atribución-NoComercial-SinDerivadas 2.5 Argentina |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/ Atribución-NoComercial-SinDerivadas 2.5 Argentina |
dc.format.none.fl_str_mv |
application/pdf p. 17-27 application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura |
publisher.none.fl_str_mv |
Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura |
dc.source.none.fl_str_mv |
FACENA, 2007, vol. 23, p. 17-27. reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) instname:Universidad Nacional del Nordeste |
reponame_str |
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) |
collection |
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) |
instname_str |
Universidad Nacional del Nordeste |
repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordeste |
repository.mail.fl_str_mv |
ososa@bib.unne.edu.ar;sergio.alegria@unne.edu.ar |
_version_ |
1843612108526190592 |
score |
12.490522 |