Optimal parameters related with continuity properties of the multilinear fractional integral operator between Lebesgue and Lipschitz spaces
- Autores
- Berra, Fabio Martín; Pradolini, Gladis Guadalupe; Ramos, Wilfredo Ariel
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We deal with the boundedness of the multilinear fractional integral operator Iγ,m from a product of weighted Lebesgue spaces into adequate weighted Lipschitz spaces. Our results generalize some previous estimates not only for the linear case but also for the unweighted problem in the multilinear context. We characterize the classes of weights for which the problem described above holds and show the optimal range of the parameters involved. The optimality is understood in the sense that the parameters defining the corresponding spaces belong to a certain region. We further exhibit examples of weights for the class which cover the mentioned area.
Fil: Berra, Fabio Martín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pradolini, Gladis Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ramos, Wilfredo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina - Materia
-
LIPSCHITZ SPACES
MULTILINEAR FRACTIONAL OPERATOR
WEIGHTS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/214478
Ver los metadatos del registro completo
id |
CONICETDig_cf64df1d79b5be7ac49f77cfbfc53490 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/214478 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Optimal parameters related with continuity properties of the multilinear fractional integral operator between Lebesgue and Lipschitz spacesBerra, Fabio MartínPradolini, Gladis GuadalupeRamos, Wilfredo ArielLIPSCHITZ SPACESMULTILINEAR FRACTIONAL OPERATORWEIGHTShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We deal with the boundedness of the multilinear fractional integral operator Iγ,m from a product of weighted Lebesgue spaces into adequate weighted Lipschitz spaces. Our results generalize some previous estimates not only for the linear case but also for the unweighted problem in the multilinear context. We characterize the classes of weights for which the problem described above holds and show the optimal range of the parameters involved. The optimality is understood in the sense that the parameters defining the corresponding spaces belong to a certain region. We further exhibit examples of weights for the class which cover the mentioned area.Fil: Berra, Fabio Martín. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pradolini, Gladis Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ramos, Wilfredo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; ArgentinaSpringer2023-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/214478Berra, Fabio Martín; Pradolini, Gladis Guadalupe; Ramos, Wilfredo Ariel; Optimal parameters related with continuity properties of the multilinear fractional integral operator between Lebesgue and Lipschitz spaces; Springer; Positivity; 27; 2; 4-2023; 1-351385-1292CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11117-023-00973-xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:49:57Zoai:ri.conicet.gov.ar:11336/214478instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:49:57.415CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Optimal parameters related with continuity properties of the multilinear fractional integral operator between Lebesgue and Lipschitz spaces |
title |
Optimal parameters related with continuity properties of the multilinear fractional integral operator between Lebesgue and Lipschitz spaces |
spellingShingle |
Optimal parameters related with continuity properties of the multilinear fractional integral operator between Lebesgue and Lipschitz spaces Berra, Fabio Martín LIPSCHITZ SPACES MULTILINEAR FRACTIONAL OPERATOR WEIGHTS |
title_short |
Optimal parameters related with continuity properties of the multilinear fractional integral operator between Lebesgue and Lipschitz spaces |
title_full |
Optimal parameters related with continuity properties of the multilinear fractional integral operator between Lebesgue and Lipschitz spaces |
title_fullStr |
Optimal parameters related with continuity properties of the multilinear fractional integral operator between Lebesgue and Lipschitz spaces |
title_full_unstemmed |
Optimal parameters related with continuity properties of the multilinear fractional integral operator between Lebesgue and Lipschitz spaces |
title_sort |
Optimal parameters related with continuity properties of the multilinear fractional integral operator between Lebesgue and Lipschitz spaces |
dc.creator.none.fl_str_mv |
Berra, Fabio Martín Pradolini, Gladis Guadalupe Ramos, Wilfredo Ariel |
author |
Berra, Fabio Martín |
author_facet |
Berra, Fabio Martín Pradolini, Gladis Guadalupe Ramos, Wilfredo Ariel |
author_role |
author |
author2 |
Pradolini, Gladis Guadalupe Ramos, Wilfredo Ariel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
LIPSCHITZ SPACES MULTILINEAR FRACTIONAL OPERATOR WEIGHTS |
topic |
LIPSCHITZ SPACES MULTILINEAR FRACTIONAL OPERATOR WEIGHTS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We deal with the boundedness of the multilinear fractional integral operator Iγ,m from a product of weighted Lebesgue spaces into adequate weighted Lipschitz spaces. Our results generalize some previous estimates not only for the linear case but also for the unweighted problem in the multilinear context. We characterize the classes of weights for which the problem described above holds and show the optimal range of the parameters involved. The optimality is understood in the sense that the parameters defining the corresponding spaces belong to a certain region. We further exhibit examples of weights for the class which cover the mentioned area. Fil: Berra, Fabio Martín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Pradolini, Gladis Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Ramos, Wilfredo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina |
description |
We deal with the boundedness of the multilinear fractional integral operator Iγ,m from a product of weighted Lebesgue spaces into adequate weighted Lipschitz spaces. Our results generalize some previous estimates not only for the linear case but also for the unweighted problem in the multilinear context. We characterize the classes of weights for which the problem described above holds and show the optimal range of the parameters involved. The optimality is understood in the sense that the parameters defining the corresponding spaces belong to a certain region. We further exhibit examples of weights for the class which cover the mentioned area. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/214478 Berra, Fabio Martín; Pradolini, Gladis Guadalupe; Ramos, Wilfredo Ariel; Optimal parameters related with continuity properties of the multilinear fractional integral operator between Lebesgue and Lipschitz spaces; Springer; Positivity; 27; 2; 4-2023; 1-35 1385-1292 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/214478 |
identifier_str_mv |
Berra, Fabio Martín; Pradolini, Gladis Guadalupe; Ramos, Wilfredo Ariel; Optimal parameters related with continuity properties of the multilinear fractional integral operator between Lebesgue and Lipschitz spaces; Springer; Positivity; 27; 2; 4-2023; 1-35 1385-1292 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11117-023-00973-x |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613542801571840 |
score |
13.070432 |