Optimal parameters related with continuity properties of the multilinear fractional integral operator between Lebesgue and Lipschitz spaces

Autores
Berra, Fabio Martín; Pradolini, Gladis Guadalupe; Ramos, Wilfredo Ariel
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We deal with the boundedness of the multilinear fractional integral operator Iγ,m from a product of weighted Lebesgue spaces into adequate weighted Lipschitz spaces. Our results generalize some previous estimates not only for the linear case but also for the unweighted problem in the multilinear context. We characterize the classes of weights for which the problem described above holds and show the optimal range of the parameters involved. The optimality is understood in the sense that the parameters defining the corresponding spaces belong to a certain region. We further exhibit examples of weights for the class which cover the mentioned area.
Fil: Berra, Fabio Martín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pradolini, Gladis Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ramos, Wilfredo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
Materia
LIPSCHITZ SPACES
MULTILINEAR FRACTIONAL OPERATOR
WEIGHTS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/214478

id CONICETDig_cf64df1d79b5be7ac49f77cfbfc53490
oai_identifier_str oai:ri.conicet.gov.ar:11336/214478
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Optimal parameters related with continuity properties of the multilinear fractional integral operator between Lebesgue and Lipschitz spacesBerra, Fabio MartínPradolini, Gladis GuadalupeRamos, Wilfredo ArielLIPSCHITZ SPACESMULTILINEAR FRACTIONAL OPERATORWEIGHTShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We deal with the boundedness of the multilinear fractional integral operator Iγ,m from a product of weighted Lebesgue spaces into adequate weighted Lipschitz spaces. Our results generalize some previous estimates not only for the linear case but also for the unweighted problem in the multilinear context. We characterize the classes of weights for which the problem described above holds and show the optimal range of the parameters involved. The optimality is understood in the sense that the parameters defining the corresponding spaces belong to a certain region. We further exhibit examples of weights for the class which cover the mentioned area.Fil: Berra, Fabio Martín. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pradolini, Gladis Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ramos, Wilfredo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; ArgentinaSpringer2023-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/214478Berra, Fabio Martín; Pradolini, Gladis Guadalupe; Ramos, Wilfredo Ariel; Optimal parameters related with continuity properties of the multilinear fractional integral operator between Lebesgue and Lipschitz spaces; Springer; Positivity; 27; 2; 4-2023; 1-351385-1292CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11117-023-00973-xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:49:57Zoai:ri.conicet.gov.ar:11336/214478instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:49:57.415CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Optimal parameters related with continuity properties of the multilinear fractional integral operator between Lebesgue and Lipschitz spaces
title Optimal parameters related with continuity properties of the multilinear fractional integral operator between Lebesgue and Lipschitz spaces
spellingShingle Optimal parameters related with continuity properties of the multilinear fractional integral operator between Lebesgue and Lipschitz spaces
Berra, Fabio Martín
LIPSCHITZ SPACES
MULTILINEAR FRACTIONAL OPERATOR
WEIGHTS
title_short Optimal parameters related with continuity properties of the multilinear fractional integral operator between Lebesgue and Lipschitz spaces
title_full Optimal parameters related with continuity properties of the multilinear fractional integral operator between Lebesgue and Lipschitz spaces
title_fullStr Optimal parameters related with continuity properties of the multilinear fractional integral operator between Lebesgue and Lipschitz spaces
title_full_unstemmed Optimal parameters related with continuity properties of the multilinear fractional integral operator between Lebesgue and Lipschitz spaces
title_sort Optimal parameters related with continuity properties of the multilinear fractional integral operator between Lebesgue and Lipschitz spaces
dc.creator.none.fl_str_mv Berra, Fabio Martín
Pradolini, Gladis Guadalupe
Ramos, Wilfredo Ariel
author Berra, Fabio Martín
author_facet Berra, Fabio Martín
Pradolini, Gladis Guadalupe
Ramos, Wilfredo Ariel
author_role author
author2 Pradolini, Gladis Guadalupe
Ramos, Wilfredo Ariel
author2_role author
author
dc.subject.none.fl_str_mv LIPSCHITZ SPACES
MULTILINEAR FRACTIONAL OPERATOR
WEIGHTS
topic LIPSCHITZ SPACES
MULTILINEAR FRACTIONAL OPERATOR
WEIGHTS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We deal with the boundedness of the multilinear fractional integral operator Iγ,m from a product of weighted Lebesgue spaces into adequate weighted Lipschitz spaces. Our results generalize some previous estimates not only for the linear case but also for the unweighted problem in the multilinear context. We characterize the classes of weights for which the problem described above holds and show the optimal range of the parameters involved. The optimality is understood in the sense that the parameters defining the corresponding spaces belong to a certain region. We further exhibit examples of weights for the class which cover the mentioned area.
Fil: Berra, Fabio Martín. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pradolini, Gladis Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ramos, Wilfredo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina
description We deal with the boundedness of the multilinear fractional integral operator Iγ,m from a product of weighted Lebesgue spaces into adequate weighted Lipschitz spaces. Our results generalize some previous estimates not only for the linear case but also for the unweighted problem in the multilinear context. We characterize the classes of weights for which the problem described above holds and show the optimal range of the parameters involved. The optimality is understood in the sense that the parameters defining the corresponding spaces belong to a certain region. We further exhibit examples of weights for the class which cover the mentioned area.
publishDate 2023
dc.date.none.fl_str_mv 2023-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/214478
Berra, Fabio Martín; Pradolini, Gladis Guadalupe; Ramos, Wilfredo Ariel; Optimal parameters related with continuity properties of the multilinear fractional integral operator between Lebesgue and Lipschitz spaces; Springer; Positivity; 27; 2; 4-2023; 1-35
1385-1292
CONICET Digital
CONICET
url http://hdl.handle.net/11336/214478
identifier_str_mv Berra, Fabio Martín; Pradolini, Gladis Guadalupe; Ramos, Wilfredo Ariel; Optimal parameters related with continuity properties of the multilinear fractional integral operator between Lebesgue and Lipschitz spaces; Springer; Positivity; 27; 2; 4-2023; 1-35
1385-1292
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s11117-023-00973-x
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613542801571840
score 13.070432