Two-weighted estimates of the multilinear fractional integral operator between weighted Lebesgue and Lipschitz spaces with optimal parameters
- Autores
- Berra, Fabio Martín; Pradolini, Gladis Guadalupe; Ramos, Wilfredo Ariel
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given an m-tuple of weights ~v = (v1, . . . , vm), we characterize the classes of pairs (w, ~v) involved in the boundedness properties of the multilinear fractional integral operator from Qm i=1 Lpi v pi i into suitable Lipschitz spaces associated to a parameter δ, Lw(δ). Our results generalize some previous estimates not only for the linear case but also for the unweighted problem in the multilinear context. We emphasize the study related to the range of the parameters involved in the problem described above, which is optimal in the sense that they become trivial outside of the region obtained. We also exhibit nontrivial examples of pairs of weights in this regio
Fil: Berra, Fabio Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
Fil: Pradolini, Gladis Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
Fil: Ramos, Wilfredo Ariel. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
LIPSCHITZ SPACES
MULTILINEAR FRACTIONAL OPERATOR
WEIGHTS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/222663
Ver los metadatos del registro completo
id |
CONICETDig_c9fe621538be3d4269a8b73ca7996beb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/222663 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Two-weighted estimates of the multilinear fractional integral operator between weighted Lebesgue and Lipschitz spaces with optimal parametersBerra, Fabio MartínPradolini, Gladis GuadalupeRamos, Wilfredo ArielLIPSCHITZ SPACESMULTILINEAR FRACTIONAL OPERATORWEIGHTShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given an m-tuple of weights ~v = (v1, . . . , vm), we characterize the classes of pairs (w, ~v) involved in the boundedness properties of the multilinear fractional integral operator from Qm i=1 Lpi v pi i into suitable Lipschitz spaces associated to a parameter δ, Lw(δ). Our results generalize some previous estimates not only for the linear case but also for the unweighted problem in the multilinear context. We emphasize the study related to the range of the parameters involved in the problem described above, which is optimal in the sense that they become trivial outside of the region obtained. We also exhibit nontrivial examples of pairs of weights in this regioFil: Berra, Fabio Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; ArgentinaFil: Pradolini, Gladis Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; ArgentinaFil: Ramos, Wilfredo Ariel. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaUnión Matemática Argentina2023-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/222663Berra, Fabio Martín; Pradolini, Gladis Guadalupe; Ramos, Wilfredo Ariel; Two-weighted estimates of the multilinear fractional integral operator between weighted Lebesgue and Lipschitz spaces with optimal parameters; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 66; 1; 7-2023; 69-900041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/revuma.php?p=doi/v66n1a03info:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.4346info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:47:18Zoai:ri.conicet.gov.ar:11336/222663instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:47:18.409CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Two-weighted estimates of the multilinear fractional integral operator between weighted Lebesgue and Lipschitz spaces with optimal parameters |
title |
Two-weighted estimates of the multilinear fractional integral operator between weighted Lebesgue and Lipschitz spaces with optimal parameters |
spellingShingle |
Two-weighted estimates of the multilinear fractional integral operator between weighted Lebesgue and Lipschitz spaces with optimal parameters Berra, Fabio Martín LIPSCHITZ SPACES MULTILINEAR FRACTIONAL OPERATOR WEIGHTS |
title_short |
Two-weighted estimates of the multilinear fractional integral operator between weighted Lebesgue and Lipschitz spaces with optimal parameters |
title_full |
Two-weighted estimates of the multilinear fractional integral operator between weighted Lebesgue and Lipschitz spaces with optimal parameters |
title_fullStr |
Two-weighted estimates of the multilinear fractional integral operator between weighted Lebesgue and Lipschitz spaces with optimal parameters |
title_full_unstemmed |
Two-weighted estimates of the multilinear fractional integral operator between weighted Lebesgue and Lipschitz spaces with optimal parameters |
title_sort |
Two-weighted estimates of the multilinear fractional integral operator between weighted Lebesgue and Lipschitz spaces with optimal parameters |
dc.creator.none.fl_str_mv |
Berra, Fabio Martín Pradolini, Gladis Guadalupe Ramos, Wilfredo Ariel |
author |
Berra, Fabio Martín |
author_facet |
Berra, Fabio Martín Pradolini, Gladis Guadalupe Ramos, Wilfredo Ariel |
author_role |
author |
author2 |
Pradolini, Gladis Guadalupe Ramos, Wilfredo Ariel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
LIPSCHITZ SPACES MULTILINEAR FRACTIONAL OPERATOR WEIGHTS |
topic |
LIPSCHITZ SPACES MULTILINEAR FRACTIONAL OPERATOR WEIGHTS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Given an m-tuple of weights ~v = (v1, . . . , vm), we characterize the classes of pairs (w, ~v) involved in the boundedness properties of the multilinear fractional integral operator from Qm i=1 Lpi v pi i into suitable Lipschitz spaces associated to a parameter δ, Lw(δ). Our results generalize some previous estimates not only for the linear case but also for the unweighted problem in the multilinear context. We emphasize the study related to the range of the parameters involved in the problem described above, which is optimal in the sense that they become trivial outside of the region obtained. We also exhibit nontrivial examples of pairs of weights in this regio Fil: Berra, Fabio Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina Fil: Pradolini, Gladis Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina Fil: Ramos, Wilfredo Ariel. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Given an m-tuple of weights ~v = (v1, . . . , vm), we characterize the classes of pairs (w, ~v) involved in the boundedness properties of the multilinear fractional integral operator from Qm i=1 Lpi v pi i into suitable Lipschitz spaces associated to a parameter δ, Lw(δ). Our results generalize some previous estimates not only for the linear case but also for the unweighted problem in the multilinear context. We emphasize the study related to the range of the parameters involved in the problem described above, which is optimal in the sense that they become trivial outside of the region obtained. We also exhibit nontrivial examples of pairs of weights in this regio |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/222663 Berra, Fabio Martín; Pradolini, Gladis Guadalupe; Ramos, Wilfredo Ariel; Two-weighted estimates of the multilinear fractional integral operator between weighted Lebesgue and Lipschitz spaces with optimal parameters; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 66; 1; 7-2023; 69-90 0041-6932 1669-9637 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/222663 |
identifier_str_mv |
Berra, Fabio Martín; Pradolini, Gladis Guadalupe; Ramos, Wilfredo Ariel; Two-weighted estimates of the multilinear fractional integral operator between weighted Lebesgue and Lipschitz spaces with optimal parameters; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 66; 1; 7-2023; 69-90 0041-6932 1669-9637 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/revuma.php?p=doi/v66n1a03 info:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.4346 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Unión Matemática Argentina |
publisher.none.fl_str_mv |
Unión Matemática Argentina |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613473778008064 |
score |
13.070432 |