Two-weighted estimates of the multilinear fractional integral operator between weighted Lebesgue and Lipschitz spaces with optimal parameters

Autores
Berra, Fabio Martín; Pradolini, Gladis Guadalupe; Ramos, Wilfredo Ariel
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Given an m-tuple of weights ~v = (v1, . . . , vm), we characterize the classes of pairs (w, ~v) involved in the boundedness properties of the multilinear fractional integral operator from Qm i=1 Lpi v pi i into suitable Lipschitz spaces associated to a parameter δ, Lw(δ). Our results generalize some previous estimates not only for the linear case but also for the unweighted problem in the multilinear context. We emphasize the study related to the range of the parameters involved in the problem described above, which is optimal in the sense that they become trivial outside of the region obtained. We also exhibit nontrivial examples of pairs of weights in this regio
Fil: Berra, Fabio Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
Fil: Pradolini, Gladis Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
Fil: Ramos, Wilfredo Ariel. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
LIPSCHITZ SPACES
MULTILINEAR FRACTIONAL OPERATOR
WEIGHTS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/222663

id CONICETDig_c9fe621538be3d4269a8b73ca7996beb
oai_identifier_str oai:ri.conicet.gov.ar:11336/222663
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Two-weighted estimates of the multilinear fractional integral operator between weighted Lebesgue and Lipschitz spaces with optimal parametersBerra, Fabio MartínPradolini, Gladis GuadalupeRamos, Wilfredo ArielLIPSCHITZ SPACESMULTILINEAR FRACTIONAL OPERATORWEIGHTShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given an m-tuple of weights ~v = (v1, . . . , vm), we characterize the classes of pairs (w, ~v) involved in the boundedness properties of the multilinear fractional integral operator from Qm i=1 Lpi v pi i into suitable Lipschitz spaces associated to a parameter δ, Lw(δ). Our results generalize some previous estimates not only for the linear case but also for the unweighted problem in the multilinear context. We emphasize the study related to the range of the parameters involved in the problem described above, which is optimal in the sense that they become trivial outside of the region obtained. We also exhibit nontrivial examples of pairs of weights in this regioFil: Berra, Fabio Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; ArgentinaFil: Pradolini, Gladis Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; ArgentinaFil: Ramos, Wilfredo Ariel. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaUnión Matemática Argentina2023-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/222663Berra, Fabio Martín; Pradolini, Gladis Guadalupe; Ramos, Wilfredo Ariel; Two-weighted estimates of the multilinear fractional integral operator between weighted Lebesgue and Lipschitz spaces with optimal parameters; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 66; 1; 7-2023; 69-900041-69321669-9637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/revuma.php?p=doi/v66n1a03info:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.4346info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:47:18Zoai:ri.conicet.gov.ar:11336/222663instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:47:18.409CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Two-weighted estimates of the multilinear fractional integral operator between weighted Lebesgue and Lipschitz spaces with optimal parameters
title Two-weighted estimates of the multilinear fractional integral operator between weighted Lebesgue and Lipschitz spaces with optimal parameters
spellingShingle Two-weighted estimates of the multilinear fractional integral operator between weighted Lebesgue and Lipschitz spaces with optimal parameters
Berra, Fabio Martín
LIPSCHITZ SPACES
MULTILINEAR FRACTIONAL OPERATOR
WEIGHTS
title_short Two-weighted estimates of the multilinear fractional integral operator between weighted Lebesgue and Lipschitz spaces with optimal parameters
title_full Two-weighted estimates of the multilinear fractional integral operator between weighted Lebesgue and Lipschitz spaces with optimal parameters
title_fullStr Two-weighted estimates of the multilinear fractional integral operator between weighted Lebesgue and Lipschitz spaces with optimal parameters
title_full_unstemmed Two-weighted estimates of the multilinear fractional integral operator between weighted Lebesgue and Lipschitz spaces with optimal parameters
title_sort Two-weighted estimates of the multilinear fractional integral operator between weighted Lebesgue and Lipschitz spaces with optimal parameters
dc.creator.none.fl_str_mv Berra, Fabio Martín
Pradolini, Gladis Guadalupe
Ramos, Wilfredo Ariel
author Berra, Fabio Martín
author_facet Berra, Fabio Martín
Pradolini, Gladis Guadalupe
Ramos, Wilfredo Ariel
author_role author
author2 Pradolini, Gladis Guadalupe
Ramos, Wilfredo Ariel
author2_role author
author
dc.subject.none.fl_str_mv LIPSCHITZ SPACES
MULTILINEAR FRACTIONAL OPERATOR
WEIGHTS
topic LIPSCHITZ SPACES
MULTILINEAR FRACTIONAL OPERATOR
WEIGHTS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Given an m-tuple of weights ~v = (v1, . . . , vm), we characterize the classes of pairs (w, ~v) involved in the boundedness properties of the multilinear fractional integral operator from Qm i=1 Lpi v pi i into suitable Lipschitz spaces associated to a parameter δ, Lw(δ). Our results generalize some previous estimates not only for the linear case but also for the unweighted problem in the multilinear context. We emphasize the study related to the range of the parameters involved in the problem described above, which is optimal in the sense that they become trivial outside of the region obtained. We also exhibit nontrivial examples of pairs of weights in this regio
Fil: Berra, Fabio Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
Fil: Pradolini, Gladis Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
Fil: Ramos, Wilfredo Ariel. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Given an m-tuple of weights ~v = (v1, . . . , vm), we characterize the classes of pairs (w, ~v) involved in the boundedness properties of the multilinear fractional integral operator from Qm i=1 Lpi v pi i into suitable Lipschitz spaces associated to a parameter δ, Lw(δ). Our results generalize some previous estimates not only for the linear case but also for the unweighted problem in the multilinear context. We emphasize the study related to the range of the parameters involved in the problem described above, which is optimal in the sense that they become trivial outside of the region obtained. We also exhibit nontrivial examples of pairs of weights in this regio
publishDate 2023
dc.date.none.fl_str_mv 2023-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/222663
Berra, Fabio Martín; Pradolini, Gladis Guadalupe; Ramos, Wilfredo Ariel; Two-weighted estimates of the multilinear fractional integral operator between weighted Lebesgue and Lipschitz spaces with optimal parameters; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 66; 1; 7-2023; 69-90
0041-6932
1669-9637
CONICET Digital
CONICET
url http://hdl.handle.net/11336/222663
identifier_str_mv Berra, Fabio Martín; Pradolini, Gladis Guadalupe; Ramos, Wilfredo Ariel; Two-weighted estimates of the multilinear fractional integral operator between weighted Lebesgue and Lipschitz spaces with optimal parameters; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 66; 1; 7-2023; 69-90
0041-6932
1669-9637
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://inmabb.criba.edu.ar/revuma/revuma.php?p=doi/v66n1a03
info:eu-repo/semantics/altIdentifier/doi/10.33044/revuma.4346
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Unión Matemática Argentina
publisher.none.fl_str_mv Unión Matemática Argentina
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613473778008064
score 13.070432