Note on the autoregressive spectral estimator
- Autores
- Mentz, Raul Pedro; Martinez, Carlos Ismael
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- An estimator of the spectral density of a stationary time series is obtained by fitting to the observations an autoregressive model (often including the estimation of its order), and computing with sample values the spectrum of the indicated model. In the present note we consider the calculation of simultaneous confidence bands, according to Newton and Pagano (1984). The procedure is illustrated by means of Monte Carlo simulations, for series generated by autoregressive models or orders up to 5. Key words and phrases. Confidence bands, asymptotic properties, Monte Carlo, Estimation of autoregressive order
Fil: Mentz, Raul Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Económicas; Argentina
Fil: Martinez, Carlos Ismael. Universidad Nacional de Tucumán. Facultad de Ciencias Económicas. Instituto de Investigaciones Estadísticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/83565
Ver los metadatos del registro completo
| id |
CONICETDig_9c2f6363cd43fd2cd976aac5e1279807 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/83565 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Note on the autoregressive spectral estimatorMentz, Raul PedroMartinez, Carlos Ismaelhttps://purl.org/becyt/ford/5.2https://purl.org/becyt/ford/5An estimator of the spectral density of a stationary time series is obtained by fitting to the observations an autoregressive model (often including the estimation of its order), and computing with sample values the spectrum of the indicated model. In the present note we consider the calculation of simultaneous confidence bands, according to Newton and Pagano (1984). The procedure is illustrated by means of Monte Carlo simulations, for series generated by autoregressive models or orders up to 5. Key words and phrases. Confidence bands, asymptotic properties, Monte Carlo, Estimation of autoregressive orderFil: Mentz, Raul Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Económicas; ArgentinaFil: Martinez, Carlos Ismael. Universidad Nacional de Tucumán. Facultad de Ciencias Económicas. Instituto de Investigaciones Estadísticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaBrazilian Statistical Association2006-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/83565Mentz, Raul Pedro; Martinez, Carlos Ismael; Note on the autoregressive spectral estimator; Brazilian Statistical Association; Brazilian Journal Of Probability And Statistics; 20; 1; 12-2006; 49-660103-0752CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.jstor.org/stable/43601073info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:13:22Zoai:ri.conicet.gov.ar:11336/83565instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:13:22.377CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Note on the autoregressive spectral estimator |
| title |
Note on the autoregressive spectral estimator |
| spellingShingle |
Note on the autoregressive spectral estimator Mentz, Raul Pedro |
| title_short |
Note on the autoregressive spectral estimator |
| title_full |
Note on the autoregressive spectral estimator |
| title_fullStr |
Note on the autoregressive spectral estimator |
| title_full_unstemmed |
Note on the autoregressive spectral estimator |
| title_sort |
Note on the autoregressive spectral estimator |
| dc.creator.none.fl_str_mv |
Mentz, Raul Pedro Martinez, Carlos Ismael |
| author |
Mentz, Raul Pedro |
| author_facet |
Mentz, Raul Pedro Martinez, Carlos Ismael |
| author_role |
author |
| author2 |
Martinez, Carlos Ismael |
| author2_role |
author |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/5.2 https://purl.org/becyt/ford/5 |
| dc.description.none.fl_txt_mv |
An estimator of the spectral density of a stationary time series is obtained by fitting to the observations an autoregressive model (often including the estimation of its order), and computing with sample values the spectrum of the indicated model. In the present note we consider the calculation of simultaneous confidence bands, according to Newton and Pagano (1984). The procedure is illustrated by means of Monte Carlo simulations, for series generated by autoregressive models or orders up to 5. Key words and phrases. Confidence bands, asymptotic properties, Monte Carlo, Estimation of autoregressive order Fil: Mentz, Raul Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Económicas; Argentina Fil: Martinez, Carlos Ismael. Universidad Nacional de Tucumán. Facultad de Ciencias Económicas. Instituto de Investigaciones Estadísticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina |
| description |
An estimator of the spectral density of a stationary time series is obtained by fitting to the observations an autoregressive model (often including the estimation of its order), and computing with sample values the spectrum of the indicated model. In the present note we consider the calculation of simultaneous confidence bands, according to Newton and Pagano (1984). The procedure is illustrated by means of Monte Carlo simulations, for series generated by autoregressive models or orders up to 5. Key words and phrases. Confidence bands, asymptotic properties, Monte Carlo, Estimation of autoregressive order |
| publishDate |
2006 |
| dc.date.none.fl_str_mv |
2006-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/83565 Mentz, Raul Pedro; Martinez, Carlos Ismael; Note on the autoregressive spectral estimator; Brazilian Statistical Association; Brazilian Journal Of Probability And Statistics; 20; 1; 12-2006; 49-66 0103-0752 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/83565 |
| identifier_str_mv |
Mentz, Raul Pedro; Martinez, Carlos Ismael; Note on the autoregressive spectral estimator; Brazilian Statistical Association; Brazilian Journal Of Probability And Statistics; 20; 1; 12-2006; 49-66 0103-0752 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.jstor.org/stable/43601073 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Brazilian Statistical Association |
| publisher.none.fl_str_mv |
Brazilian Statistical Association |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781540358422528 |
| score |
12.982451 |