Robust estimation for vector autoregressive models
- Autores
- Muler, Nora; Yohai, Victor Jaime
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A new class of robust estimators for VAR models is introduced. These estimators are an extension to the multivariate case of the MM-estimators based on a bounded innovation propagation AR model. They have a filtering mechanism that avoids the propagation of the effect of one outlier to the residuals of the subsequent periods. Besides, they are consistent and have the same asymptotic normal distribution as regular MM-estimators for VAR models. A Monte Carlo study shows that these estimators compare favorable with respect to other robust ones.
Fil: Muler, Nora. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina
Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Robust Estimators
Bmm-Estimator
Var Models - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/15912
Ver los metadatos del registro completo
id |
CONICETDig_25dd5dfe6827ca1dcfe3400271b0950a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/15912 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Robust estimation for vector autoregressive modelsMuler, NoraYohai, Victor JaimeRobust EstimatorsBmm-EstimatorVar Modelshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A new class of robust estimators for VAR models is introduced. These estimators are an extension to the multivariate case of the MM-estimators based on a bounded innovation propagation AR model. They have a filtering mechanism that avoids the propagation of the effect of one outlier to the residuals of the subsequent periods. Besides, they are consistent and have the same asymptotic normal distribution as regular MM-estimators for VAR models. A Monte Carlo study shows that these estimators compare favorable with respect to other robust ones.Fil: Muler, Nora. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; ArgentinaFil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2013-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15912Muler, Nora; Yohai, Victor Jaime; Robust estimation for vector autoregressive models; Elsevier Science; Computational Statistics And Data Analysis; 65; 9-2013; 68-790167-9473enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.csda.2012.02.011info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S016794731200093Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:05:26Zoai:ri.conicet.gov.ar:11336/15912instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:05:26.575CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Robust estimation for vector autoregressive models |
title |
Robust estimation for vector autoregressive models |
spellingShingle |
Robust estimation for vector autoregressive models Muler, Nora Robust Estimators Bmm-Estimator Var Models |
title_short |
Robust estimation for vector autoregressive models |
title_full |
Robust estimation for vector autoregressive models |
title_fullStr |
Robust estimation for vector autoregressive models |
title_full_unstemmed |
Robust estimation for vector autoregressive models |
title_sort |
Robust estimation for vector autoregressive models |
dc.creator.none.fl_str_mv |
Muler, Nora Yohai, Victor Jaime |
author |
Muler, Nora |
author_facet |
Muler, Nora Yohai, Victor Jaime |
author_role |
author |
author2 |
Yohai, Victor Jaime |
author2_role |
author |
dc.subject.none.fl_str_mv |
Robust Estimators Bmm-Estimator Var Models |
topic |
Robust Estimators Bmm-Estimator Var Models |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A new class of robust estimators for VAR models is introduced. These estimators are an extension to the multivariate case of the MM-estimators based on a bounded innovation propagation AR model. They have a filtering mechanism that avoids the propagation of the effect of one outlier to the residuals of the subsequent periods. Besides, they are consistent and have the same asymptotic normal distribution as regular MM-estimators for VAR models. A Monte Carlo study shows that these estimators compare favorable with respect to other robust ones. Fil: Muler, Nora. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
A new class of robust estimators for VAR models is introduced. These estimators are an extension to the multivariate case of the MM-estimators based on a bounded innovation propagation AR model. They have a filtering mechanism that avoids the propagation of the effect of one outlier to the residuals of the subsequent periods. Besides, they are consistent and have the same asymptotic normal distribution as regular MM-estimators for VAR models. A Monte Carlo study shows that these estimators compare favorable with respect to other robust ones. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/15912 Muler, Nora; Yohai, Victor Jaime; Robust estimation for vector autoregressive models; Elsevier Science; Computational Statistics And Data Analysis; 65; 9-2013; 68-79 0167-9473 |
url |
http://hdl.handle.net/11336/15912 |
identifier_str_mv |
Muler, Nora; Yohai, Victor Jaime; Robust estimation for vector autoregressive models; Elsevier Science; Computational Statistics And Data Analysis; 65; 9-2013; 68-79 0167-9473 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.csda.2012.02.011 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S016794731200093X |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613890012348416 |
score |
13.070432 |