Multivariate contemporaneous-threshold autoregressive models
- Autores
- Dueker, Michael J.; Psaradakis, Zacharias; Sola, Martin; Spagnolo, Fabio
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper proposes a contemporaneous-threshold multivariate smooth transition autoregressive (C-MSTAR) model in which the regime weights depend on the ex-ante probabilities that latent regime-specific variables exceed certain threshold values. A key feature of the model is that the transition function depends on all the parameters of the model as well as on the data. Since the mixing weights are also a function of the regime-specific noise covariance matrix, the model can account for contemporaneous regime-specific co-movements of the variables. The stability and distributional properties of the proposed model are discussed, as well as issues of estimation, testing and forecasting. The practical usefulness of the C-MSTAR model is illustrated by examining the relationship between US stock prices and interest rates.
Fil: Dueker, Michael J.. No especifíca;
Fil: Psaradakis, Zacharias. University of London; Reino Unido
Fil: Sola, Martin. University of London; Reino Unido. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Spagnolo, Fabio. Brunel University; Reino Unido - Materia
-
NONLINEAR AUTOREGRESSIVE MODEL
SMOOTH TRANSITION
STABILITY
THRESHOLD - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/188594
Ver los metadatos del registro completo
| id |
CONICETDig_04d66a921984aa15eacafec57c4ac348 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/188594 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Multivariate contemporaneous-threshold autoregressive modelsDueker, Michael J.Psaradakis, ZachariasSola, MartinSpagnolo, FabioNONLINEAR AUTOREGRESSIVE MODELSMOOTH TRANSITIONSTABILITYTHRESHOLDhttps://purl.org/becyt/ford/5.2https://purl.org/becyt/ford/5This paper proposes a contemporaneous-threshold multivariate smooth transition autoregressive (C-MSTAR) model in which the regime weights depend on the ex-ante probabilities that latent regime-specific variables exceed certain threshold values. A key feature of the model is that the transition function depends on all the parameters of the model as well as on the data. Since the mixing weights are also a function of the regime-specific noise covariance matrix, the model can account for contemporaneous regime-specific co-movements of the variables. The stability and distributional properties of the proposed model are discussed, as well as issues of estimation, testing and forecasting. The practical usefulness of the C-MSTAR model is illustrated by examining the relationship between US stock prices and interest rates.Fil: Dueker, Michael J.. No especifíca;Fil: Psaradakis, Zacharias. University of London; Reino UnidoFil: Sola, Martin. University of London; Reino Unido. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Spagnolo, Fabio. Brunel University; Reino UnidoElsevier Science SA2011-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/188594Dueker, Michael J.; Psaradakis, Zacharias; Sola, Martin; Spagnolo, Fabio; Multivariate contemporaneous-threshold autoregressive models; Elsevier Science SA; Journal of Econometrics; 160; 2; 2-2011; 311-3250304-4076CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0304407610001910info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jeconom.2010.09.011info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:36:11Zoai:ri.conicet.gov.ar:11336/188594instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:36:12.133CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Multivariate contemporaneous-threshold autoregressive models |
| title |
Multivariate contemporaneous-threshold autoregressive models |
| spellingShingle |
Multivariate contemporaneous-threshold autoregressive models Dueker, Michael J. NONLINEAR AUTOREGRESSIVE MODEL SMOOTH TRANSITION STABILITY THRESHOLD |
| title_short |
Multivariate contemporaneous-threshold autoregressive models |
| title_full |
Multivariate contemporaneous-threshold autoregressive models |
| title_fullStr |
Multivariate contemporaneous-threshold autoregressive models |
| title_full_unstemmed |
Multivariate contemporaneous-threshold autoregressive models |
| title_sort |
Multivariate contemporaneous-threshold autoregressive models |
| dc.creator.none.fl_str_mv |
Dueker, Michael J. Psaradakis, Zacharias Sola, Martin Spagnolo, Fabio |
| author |
Dueker, Michael J. |
| author_facet |
Dueker, Michael J. Psaradakis, Zacharias Sola, Martin Spagnolo, Fabio |
| author_role |
author |
| author2 |
Psaradakis, Zacharias Sola, Martin Spagnolo, Fabio |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
NONLINEAR AUTOREGRESSIVE MODEL SMOOTH TRANSITION STABILITY THRESHOLD |
| topic |
NONLINEAR AUTOREGRESSIVE MODEL SMOOTH TRANSITION STABILITY THRESHOLD |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/5.2 https://purl.org/becyt/ford/5 |
| dc.description.none.fl_txt_mv |
This paper proposes a contemporaneous-threshold multivariate smooth transition autoregressive (C-MSTAR) model in which the regime weights depend on the ex-ante probabilities that latent regime-specific variables exceed certain threshold values. A key feature of the model is that the transition function depends on all the parameters of the model as well as on the data. Since the mixing weights are also a function of the regime-specific noise covariance matrix, the model can account for contemporaneous regime-specific co-movements of the variables. The stability and distributional properties of the proposed model are discussed, as well as issues of estimation, testing and forecasting. The practical usefulness of the C-MSTAR model is illustrated by examining the relationship between US stock prices and interest rates. Fil: Dueker, Michael J.. No especifíca; Fil: Psaradakis, Zacharias. University of London; Reino Unido Fil: Sola, Martin. University of London; Reino Unido. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Spagnolo, Fabio. Brunel University; Reino Unido |
| description |
This paper proposes a contemporaneous-threshold multivariate smooth transition autoregressive (C-MSTAR) model in which the regime weights depend on the ex-ante probabilities that latent regime-specific variables exceed certain threshold values. A key feature of the model is that the transition function depends on all the parameters of the model as well as on the data. Since the mixing weights are also a function of the regime-specific noise covariance matrix, the model can account for contemporaneous regime-specific co-movements of the variables. The stability and distributional properties of the proposed model are discussed, as well as issues of estimation, testing and forecasting. The practical usefulness of the C-MSTAR model is illustrated by examining the relationship between US stock prices and interest rates. |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011-02 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/188594 Dueker, Michael J.; Psaradakis, Zacharias; Sola, Martin; Spagnolo, Fabio; Multivariate contemporaneous-threshold autoregressive models; Elsevier Science SA; Journal of Econometrics; 160; 2; 2-2011; 311-325 0304-4076 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/188594 |
| identifier_str_mv |
Dueker, Michael J.; Psaradakis, Zacharias; Sola, Martin; Spagnolo, Fabio; Multivariate contemporaneous-threshold autoregressive models; Elsevier Science SA; Journal of Econometrics; 160; 2; 2-2011; 311-325 0304-4076 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0304407610001910 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jeconom.2010.09.011 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier Science SA |
| publisher.none.fl_str_mv |
Elsevier Science SA |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597243363328000 |
| score |
12.976206 |