Linear discrimination for three-level multivariate data with a separable additive mean vector and a doubly exchangeable covariance structure
- Autores
- Leiva, Ricardo Anibal; Roy, Anuradha
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this article, we study a new linear discriminant function for three-level m-variate observations under the assumption of multivariate normality. We assume that the m-variate observations have a doubly exchangeable covariance structure consisting of three unstructured covariance matrices for three multivariate levels and a separable additive structure on the mean vector. The new discriminant function is very efficient in discriminating individuals in a small sample scenario. An iterative algorithm is proposed to calculate the maximum likelihood estimates of the unknown population parameters as closed form solutions do not exist for these unknown parameters. The new discriminant function is applied to a real data set as well as to simulated data sets. We compare our findings with other linear discriminant functions for three-level multivariate data as well as with the traditional linear discriminant function.
Fil: Leiva, Ricardo Anibal. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Roy, Anuradha. University of Texas; Estados Unidos - Materia
-
ADDITIVE MEAN STRUCTURE
DOUBLY EXCHANGEABLE COVARIANCE STRUCTURE
LINEAR DISCRIMINANT FUNCTION
MAXIMUM LIKELIHOOD ESTIMATES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/198694
Ver los metadatos del registro completo
id |
CONICETDig_9c13a3cc02c964fcb29595b03ee124ed |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/198694 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Linear discrimination for three-level multivariate data with a separable additive mean vector and a doubly exchangeable covariance structureLeiva, Ricardo AnibalRoy, AnuradhaADDITIVE MEAN STRUCTUREDOUBLY EXCHANGEABLE COVARIANCE STRUCTURELINEAR DISCRIMINANT FUNCTIONMAXIMUM LIKELIHOOD ESTIMATEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this article, we study a new linear discriminant function for three-level m-variate observations under the assumption of multivariate normality. We assume that the m-variate observations have a doubly exchangeable covariance structure consisting of three unstructured covariance matrices for three multivariate levels and a separable additive structure on the mean vector. The new discriminant function is very efficient in discriminating individuals in a small sample scenario. An iterative algorithm is proposed to calculate the maximum likelihood estimates of the unknown population parameters as closed form solutions do not exist for these unknown parameters. The new discriminant function is applied to a real data set as well as to simulated data sets. We compare our findings with other linear discriminant functions for three-level multivariate data as well as with the traditional linear discriminant function.Fil: Leiva, Ricardo Anibal. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Roy, Anuradha. University of Texas; Estados UnidosElsevier Science2012-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/198694Leiva, Ricardo Anibal; Roy, Anuradha; Linear discrimination for three-level multivariate data with a separable additive mean vector and a doubly exchangeable covariance structure; Elsevier Science; Computational Statistics and Data Analysis; 56; 6; 6-2012; 1644-16610167-9473CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167947311003641info:eu-repo/semantics/altIdentifier/doi/10.1016/j.csda.2011.10.007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:36:35Zoai:ri.conicet.gov.ar:11336/198694instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:36:35.667CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Linear discrimination for three-level multivariate data with a separable additive mean vector and a doubly exchangeable covariance structure |
title |
Linear discrimination for three-level multivariate data with a separable additive mean vector and a doubly exchangeable covariance structure |
spellingShingle |
Linear discrimination for three-level multivariate data with a separable additive mean vector and a doubly exchangeable covariance structure Leiva, Ricardo Anibal ADDITIVE MEAN STRUCTURE DOUBLY EXCHANGEABLE COVARIANCE STRUCTURE LINEAR DISCRIMINANT FUNCTION MAXIMUM LIKELIHOOD ESTIMATES |
title_short |
Linear discrimination for three-level multivariate data with a separable additive mean vector and a doubly exchangeable covariance structure |
title_full |
Linear discrimination for three-level multivariate data with a separable additive mean vector and a doubly exchangeable covariance structure |
title_fullStr |
Linear discrimination for three-level multivariate data with a separable additive mean vector and a doubly exchangeable covariance structure |
title_full_unstemmed |
Linear discrimination for three-level multivariate data with a separable additive mean vector and a doubly exchangeable covariance structure |
title_sort |
Linear discrimination for three-level multivariate data with a separable additive mean vector and a doubly exchangeable covariance structure |
dc.creator.none.fl_str_mv |
Leiva, Ricardo Anibal Roy, Anuradha |
author |
Leiva, Ricardo Anibal |
author_facet |
Leiva, Ricardo Anibal Roy, Anuradha |
author_role |
author |
author2 |
Roy, Anuradha |
author2_role |
author |
dc.subject.none.fl_str_mv |
ADDITIVE MEAN STRUCTURE DOUBLY EXCHANGEABLE COVARIANCE STRUCTURE LINEAR DISCRIMINANT FUNCTION MAXIMUM LIKELIHOOD ESTIMATES |
topic |
ADDITIVE MEAN STRUCTURE DOUBLY EXCHANGEABLE COVARIANCE STRUCTURE LINEAR DISCRIMINANT FUNCTION MAXIMUM LIKELIHOOD ESTIMATES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this article, we study a new linear discriminant function for three-level m-variate observations under the assumption of multivariate normality. We assume that the m-variate observations have a doubly exchangeable covariance structure consisting of three unstructured covariance matrices for three multivariate levels and a separable additive structure on the mean vector. The new discriminant function is very efficient in discriminating individuals in a small sample scenario. An iterative algorithm is proposed to calculate the maximum likelihood estimates of the unknown population parameters as closed form solutions do not exist for these unknown parameters. The new discriminant function is applied to a real data set as well as to simulated data sets. We compare our findings with other linear discriminant functions for three-level multivariate data as well as with the traditional linear discriminant function. Fil: Leiva, Ricardo Anibal. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Roy, Anuradha. University of Texas; Estados Unidos |
description |
In this article, we study a new linear discriminant function for three-level m-variate observations under the assumption of multivariate normality. We assume that the m-variate observations have a doubly exchangeable covariance structure consisting of three unstructured covariance matrices for three multivariate levels and a separable additive structure on the mean vector. The new discriminant function is very efficient in discriminating individuals in a small sample scenario. An iterative algorithm is proposed to calculate the maximum likelihood estimates of the unknown population parameters as closed form solutions do not exist for these unknown parameters. The new discriminant function is applied to a real data set as well as to simulated data sets. We compare our findings with other linear discriminant functions for three-level multivariate data as well as with the traditional linear discriminant function. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/198694 Leiva, Ricardo Anibal; Roy, Anuradha; Linear discrimination for three-level multivariate data with a separable additive mean vector and a doubly exchangeable covariance structure; Elsevier Science; Computational Statistics and Data Analysis; 56; 6; 6-2012; 1644-1661 0167-9473 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/198694 |
identifier_str_mv |
Leiva, Ricardo Anibal; Roy, Anuradha; Linear discrimination for three-level multivariate data with a separable additive mean vector and a doubly exchangeable covariance structure; Elsevier Science; Computational Statistics and Data Analysis; 56; 6; 6-2012; 1644-1661 0167-9473 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167947311003641 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.csda.2011.10.007 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082832423714816 |
score |
13.22299 |