A new projection estimate for multivariate location with minimax bias
- Autores
- Adrover, Jorge Gabriel; Yohai, Victor Jaime
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The maximum asymptotic bias of an estimator is a global robustness measure of its performance. The projection median estimator for multivariate location shows a remarkable behavior regarding asymptotic bias. In this paper we consider a modification of the projection median estimator which renders an estimate with better bias performance for point mass contaminations (the worst situation for the projection median estimator). Moreover, it achieves the lowest bound for an equivariant estimate for point mass contaminations.
Fil: Adrover, Jorge Gabriel. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Yohai, Victor Jaime. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Projection Estimates
Maximum Bias
Robust Estimates
Multivariate Location - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/16528
Ver los metadatos del registro completo
id |
CONICETDig_5420e311cca3510849b2a060d8a53604 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/16528 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A new projection estimate for multivariate location with minimax biasAdrover, Jorge GabrielYohai, Victor JaimeProjection EstimatesMaximum BiasRobust EstimatesMultivariate Locationhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The maximum asymptotic bias of an estimator is a global robustness measure of its performance. The projection median estimator for multivariate location shows a remarkable behavior regarding asymptotic bias. In this paper we consider a modification of the projection median estimator which renders an estimate with better bias performance for point mass contaminations (the worst situation for the projection median estimator). Moreover, it achieves the lowest bound for an equivariant estimate for point mass contaminations.Fil: Adrover, Jorge Gabriel. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Yohai, Victor Jaime. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Inc2010-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/16528Adrover, Jorge Gabriel; Yohai, Victor Jaime; A new projection estimate for multivariate location with minimax bias; Elsevier Inc; Journal Of Multivariate Analysis; 101; 6; 7-2010; 1400-14110047-259Xenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmva.2009.12.007info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0047259X09002267info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:18:06Zoai:ri.conicet.gov.ar:11336/16528instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:18:06.691CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A new projection estimate for multivariate location with minimax bias |
title |
A new projection estimate for multivariate location with minimax bias |
spellingShingle |
A new projection estimate for multivariate location with minimax bias Adrover, Jorge Gabriel Projection Estimates Maximum Bias Robust Estimates Multivariate Location |
title_short |
A new projection estimate for multivariate location with minimax bias |
title_full |
A new projection estimate for multivariate location with minimax bias |
title_fullStr |
A new projection estimate for multivariate location with minimax bias |
title_full_unstemmed |
A new projection estimate for multivariate location with minimax bias |
title_sort |
A new projection estimate for multivariate location with minimax bias |
dc.creator.none.fl_str_mv |
Adrover, Jorge Gabriel Yohai, Victor Jaime |
author |
Adrover, Jorge Gabriel |
author_facet |
Adrover, Jorge Gabriel Yohai, Victor Jaime |
author_role |
author |
author2 |
Yohai, Victor Jaime |
author2_role |
author |
dc.subject.none.fl_str_mv |
Projection Estimates Maximum Bias Robust Estimates Multivariate Location |
topic |
Projection Estimates Maximum Bias Robust Estimates Multivariate Location |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The maximum asymptotic bias of an estimator is a global robustness measure of its performance. The projection median estimator for multivariate location shows a remarkable behavior regarding asymptotic bias. In this paper we consider a modification of the projection median estimator which renders an estimate with better bias performance for point mass contaminations (the worst situation for the projection median estimator). Moreover, it achieves the lowest bound for an equivariant estimate for point mass contaminations. Fil: Adrover, Jorge Gabriel. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Yohai, Victor Jaime. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
The maximum asymptotic bias of an estimator is a global robustness measure of its performance. The projection median estimator for multivariate location shows a remarkable behavior regarding asymptotic bias. In this paper we consider a modification of the projection median estimator which renders an estimate with better bias performance for point mass contaminations (the worst situation for the projection median estimator). Moreover, it achieves the lowest bound for an equivariant estimate for point mass contaminations. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/16528 Adrover, Jorge Gabriel; Yohai, Victor Jaime; A new projection estimate for multivariate location with minimax bias; Elsevier Inc; Journal Of Multivariate Analysis; 101; 6; 7-2010; 1400-1411 0047-259X |
url |
http://hdl.handle.net/11336/16528 |
identifier_str_mv |
Adrover, Jorge Gabriel; Yohai, Victor Jaime; A new projection estimate for multivariate location with minimax bias; Elsevier Inc; Journal Of Multivariate Analysis; 101; 6; 7-2010; 1400-1411 0047-259X |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmva.2009.12.007 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0047259X09002267 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Inc |
publisher.none.fl_str_mv |
Elsevier Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083329896480768 |
score |
13.22299 |