Density Estimation using Quantile Variance and Quantile-Mean Covariance
- Autores
- Mena, Andrés Sebastián; Montes, Rojas Gabriel Victorio
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Based on asymptotic properties of sample Quantile Distribution derived by Hall & Martin (1988) and Ferguson (1999), we propose a novel method which explodes Quantile Variance, and Quantile-Mean Covariance to estimate distributional density from samples. The process consists in firstly estimate sample Quantile Variance and sample Quantile-Mean Covariance using bootstrap techniques and after use them to compute distributional density. We conducted Montecarlo Simulations for different Data Generating Process, sample size and parameters and we discovered that for many cases Quantile Density Estimators perform better in terms of Mean Integrated Squared Error than standard Kernel Density Estimator. Finally, we propose some smoothing techniques in order to reduce estimators variance and increase their accuracy.
Facultad de Ciencias Económicas - Materia
-
Ciencias Económicas
Density Estimation
Quantile Variance
Quantile-Mean Covariance
Bootstrap - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/169127
Ver los metadatos del registro completo
id |
SEDICI_2ed1c76a7a051a6360b4c9865759828e |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/169127 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Density Estimation using Quantile Variance and Quantile-Mean CovarianceMena, Andrés SebastiánMontes, Rojas Gabriel VictorioCiencias EconómicasDensity EstimationQuantile VarianceQuantile-Mean CovarianceBootstrapBased on asymptotic properties of sample Quantile Distribution derived by Hall & Martin (1988) and Ferguson (1999), we propose a novel method which explodes Quantile Variance, and Quantile-Mean Covariance to estimate distributional density from samples. The process consists in firstly estimate sample Quantile Variance and sample Quantile-Mean Covariance using bootstrap techniques and after use them to compute distributional density. We conducted Montecarlo Simulations for different Data Generating Process, sample size and parameters and we discovered that for many cases Quantile Density Estimators perform better in terms of Mean Integrated Squared Error than standard Kernel Density Estimator. Finally, we propose some smoothing techniques in order to reduce estimators variance and increase their accuracy.Facultad de Ciencias Económicas2018-11info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/169127enginfo:eu-repo/semantics/altIdentifier/isbn/978-987-28590-6-0info:eu-repo/semantics/altIdentifier/url/https://bd.aaep.org.ar/anales/works/works2018/mena_montes.pdfinfo:eu-repo/semantics/altIdentifier/issn/1852-0022info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:43:25Zoai:sedici.unlp.edu.ar:10915/169127Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:43:26.124SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Density Estimation using Quantile Variance and Quantile-Mean Covariance |
title |
Density Estimation using Quantile Variance and Quantile-Mean Covariance |
spellingShingle |
Density Estimation using Quantile Variance and Quantile-Mean Covariance Mena, Andrés Sebastián Ciencias Económicas Density Estimation Quantile Variance Quantile-Mean Covariance Bootstrap |
title_short |
Density Estimation using Quantile Variance and Quantile-Mean Covariance |
title_full |
Density Estimation using Quantile Variance and Quantile-Mean Covariance |
title_fullStr |
Density Estimation using Quantile Variance and Quantile-Mean Covariance |
title_full_unstemmed |
Density Estimation using Quantile Variance and Quantile-Mean Covariance |
title_sort |
Density Estimation using Quantile Variance and Quantile-Mean Covariance |
dc.creator.none.fl_str_mv |
Mena, Andrés Sebastián Montes, Rojas Gabriel Victorio |
author |
Mena, Andrés Sebastián |
author_facet |
Mena, Andrés Sebastián Montes, Rojas Gabriel Victorio |
author_role |
author |
author2 |
Montes, Rojas Gabriel Victorio |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Económicas Density Estimation Quantile Variance Quantile-Mean Covariance Bootstrap |
topic |
Ciencias Económicas Density Estimation Quantile Variance Quantile-Mean Covariance Bootstrap |
dc.description.none.fl_txt_mv |
Based on asymptotic properties of sample Quantile Distribution derived by Hall & Martin (1988) and Ferguson (1999), we propose a novel method which explodes Quantile Variance, and Quantile-Mean Covariance to estimate distributional density from samples. The process consists in firstly estimate sample Quantile Variance and sample Quantile-Mean Covariance using bootstrap techniques and after use them to compute distributional density. We conducted Montecarlo Simulations for different Data Generating Process, sample size and parameters and we discovered that for many cases Quantile Density Estimators perform better in terms of Mean Integrated Squared Error than standard Kernel Density Estimator. Finally, we propose some smoothing techniques in order to reduce estimators variance and increase their accuracy. Facultad de Ciencias Económicas |
description |
Based on asymptotic properties of sample Quantile Distribution derived by Hall & Martin (1988) and Ferguson (1999), we propose a novel method which explodes Quantile Variance, and Quantile-Mean Covariance to estimate distributional density from samples. The process consists in firstly estimate sample Quantile Variance and sample Quantile-Mean Covariance using bootstrap techniques and after use them to compute distributional density. We conducted Montecarlo Simulations for different Data Generating Process, sample size and parameters and we discovered that for many cases Quantile Density Estimators perform better in terms of Mean Integrated Squared Error than standard Kernel Density Estimator. Finally, we propose some smoothing techniques in order to reduce estimators variance and increase their accuracy. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/169127 |
url |
http://sedici.unlp.edu.ar/handle/10915/169127 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-987-28590-6-0 info:eu-repo/semantics/altIdentifier/url/https://bd.aaep.org.ar/anales/works/works2018/mena_montes.pdf info:eu-repo/semantics/altIdentifier/issn/1852-0022 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616302646263808 |
score |
13.070432 |