Classification rules for multivariate repeated measures data with equicorrelated correlation structure on both time and spatial repeated measurements
- Autores
- Roy, Anuradha; Leiva, Ricardo Anibal
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the problem of classification for multivariate repeated measures data with structured correlations on both time and spatial repeated measurements. This is a very important problem in many biomedical as well as in engineering field. Classification rules as well as the algorithm to compute the maximum likelihood estimates of the required parameters are given.
Fil: Roy, Anuradha. University of Texas; Estados Unidos
Fil: Leiva, Ricardo Anibal. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina - Materia
-
COVARIANCE STRUCTURE
MAXIMUM LIKELIHOOD ESTIMATES
REPEATED OBSERVATIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/198706
Ver los metadatos del registro completo
id |
CONICETDig_37e21bff57475db357ad3bbd13f7885d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/198706 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Classification rules for multivariate repeated measures data with equicorrelated correlation structure on both time and spatial repeated measurementsRoy, AnuradhaLeiva, Ricardo AnibalCOVARIANCE STRUCTUREMAXIMUM LIKELIHOOD ESTIMATESREPEATED OBSERVATIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the problem of classification for multivariate repeated measures data with structured correlations on both time and spatial repeated measurements. This is a very important problem in many biomedical as well as in engineering field. Classification rules as well as the algorithm to compute the maximum likelihood estimates of the required parameters are given.Fil: Roy, Anuradha. University of Texas; Estados UnidosFil: Leiva, Ricardo Anibal. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaTaylor & Francis2012-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/198706Roy, Anuradha; Leiva, Ricardo Anibal; Classification rules for multivariate repeated measures data with equicorrelated correlation structure on both time and spatial repeated measurements; Taylor & Francis; Communications In Statistics-theory And Methods; 41; 8; 12-2012; 1411-14200361-0926CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/03610926.2010.530369info:eu-repo/semantics/altIdentifier/doi/10.1080/03610926.2010.530369info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:27:29Zoai:ri.conicet.gov.ar:11336/198706instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:27:29.481CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Classification rules for multivariate repeated measures data with equicorrelated correlation structure on both time and spatial repeated measurements |
title |
Classification rules for multivariate repeated measures data with equicorrelated correlation structure on both time and spatial repeated measurements |
spellingShingle |
Classification rules for multivariate repeated measures data with equicorrelated correlation structure on both time and spatial repeated measurements Roy, Anuradha COVARIANCE STRUCTURE MAXIMUM LIKELIHOOD ESTIMATES REPEATED OBSERVATIONS |
title_short |
Classification rules for multivariate repeated measures data with equicorrelated correlation structure on both time and spatial repeated measurements |
title_full |
Classification rules for multivariate repeated measures data with equicorrelated correlation structure on both time and spatial repeated measurements |
title_fullStr |
Classification rules for multivariate repeated measures data with equicorrelated correlation structure on both time and spatial repeated measurements |
title_full_unstemmed |
Classification rules for multivariate repeated measures data with equicorrelated correlation structure on both time and spatial repeated measurements |
title_sort |
Classification rules for multivariate repeated measures data with equicorrelated correlation structure on both time and spatial repeated measurements |
dc.creator.none.fl_str_mv |
Roy, Anuradha Leiva, Ricardo Anibal |
author |
Roy, Anuradha |
author_facet |
Roy, Anuradha Leiva, Ricardo Anibal |
author_role |
author |
author2 |
Leiva, Ricardo Anibal |
author2_role |
author |
dc.subject.none.fl_str_mv |
COVARIANCE STRUCTURE MAXIMUM LIKELIHOOD ESTIMATES REPEATED OBSERVATIONS |
topic |
COVARIANCE STRUCTURE MAXIMUM LIKELIHOOD ESTIMATES REPEATED OBSERVATIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the problem of classification for multivariate repeated measures data with structured correlations on both time and spatial repeated measurements. This is a very important problem in many biomedical as well as in engineering field. Classification rules as well as the algorithm to compute the maximum likelihood estimates of the required parameters are given. Fil: Roy, Anuradha. University of Texas; Estados Unidos Fil: Leiva, Ricardo Anibal. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina |
description |
We study the problem of classification for multivariate repeated measures data with structured correlations on both time and spatial repeated measurements. This is a very important problem in many biomedical as well as in engineering field. Classification rules as well as the algorithm to compute the maximum likelihood estimates of the required parameters are given. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/198706 Roy, Anuradha; Leiva, Ricardo Anibal; Classification rules for multivariate repeated measures data with equicorrelated correlation structure on both time and spatial repeated measurements; Taylor & Francis; Communications In Statistics-theory And Methods; 41; 8; 12-2012; 1411-1420 0361-0926 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/198706 |
identifier_str_mv |
Roy, Anuradha; Leiva, Ricardo Anibal; Classification rules for multivariate repeated measures data with equicorrelated correlation structure on both time and spatial repeated measurements; Taylor & Francis; Communications In Statistics-theory And Methods; 41; 8; 12-2012; 1411-1420 0361-0926 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/03610926.2010.530369 info:eu-repo/semantics/altIdentifier/doi/10.1080/03610926.2010.530369 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083416747933696 |
score |
13.22299 |