Classification rules for multivariate repeated measures data with equicorrelated correlation structure on both time and spatial repeated measurements

Autores
Roy, Anuradha; Leiva, Ricardo Anibal
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the problem of classification for multivariate repeated measures data with structured correlations on both time and spatial repeated measurements. This is a very important problem in many biomedical as well as in engineering field. Classification rules as well as the algorithm to compute the maximum likelihood estimates of the required parameters are given.
Fil: Roy, Anuradha. University of Texas; Estados Unidos
Fil: Leiva, Ricardo Anibal. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Materia
COVARIANCE STRUCTURE
MAXIMUM LIKELIHOOD ESTIMATES
REPEATED OBSERVATIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/198706

id CONICETDig_37e21bff57475db357ad3bbd13f7885d
oai_identifier_str oai:ri.conicet.gov.ar:11336/198706
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Classification rules for multivariate repeated measures data with equicorrelated correlation structure on both time and spatial repeated measurementsRoy, AnuradhaLeiva, Ricardo AnibalCOVARIANCE STRUCTUREMAXIMUM LIKELIHOOD ESTIMATESREPEATED OBSERVATIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the problem of classification for multivariate repeated measures data with structured correlations on both time and spatial repeated measurements. This is a very important problem in many biomedical as well as in engineering field. Classification rules as well as the algorithm to compute the maximum likelihood estimates of the required parameters are given.Fil: Roy, Anuradha. University of Texas; Estados UnidosFil: Leiva, Ricardo Anibal. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaTaylor & Francis2012-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/198706Roy, Anuradha; Leiva, Ricardo Anibal; Classification rules for multivariate repeated measures data with equicorrelated correlation structure on both time and spatial repeated measurements; Taylor & Francis; Communications In Statistics-theory And Methods; 41; 8; 12-2012; 1411-14200361-0926CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/03610926.2010.530369info:eu-repo/semantics/altIdentifier/doi/10.1080/03610926.2010.530369info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:27:29Zoai:ri.conicet.gov.ar:11336/198706instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:27:29.481CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Classification rules for multivariate repeated measures data with equicorrelated correlation structure on both time and spatial repeated measurements
title Classification rules for multivariate repeated measures data with equicorrelated correlation structure on both time and spatial repeated measurements
spellingShingle Classification rules for multivariate repeated measures data with equicorrelated correlation structure on both time and spatial repeated measurements
Roy, Anuradha
COVARIANCE STRUCTURE
MAXIMUM LIKELIHOOD ESTIMATES
REPEATED OBSERVATIONS
title_short Classification rules for multivariate repeated measures data with equicorrelated correlation structure on both time and spatial repeated measurements
title_full Classification rules for multivariate repeated measures data with equicorrelated correlation structure on both time and spatial repeated measurements
title_fullStr Classification rules for multivariate repeated measures data with equicorrelated correlation structure on both time and spatial repeated measurements
title_full_unstemmed Classification rules for multivariate repeated measures data with equicorrelated correlation structure on both time and spatial repeated measurements
title_sort Classification rules for multivariate repeated measures data with equicorrelated correlation structure on both time and spatial repeated measurements
dc.creator.none.fl_str_mv Roy, Anuradha
Leiva, Ricardo Anibal
author Roy, Anuradha
author_facet Roy, Anuradha
Leiva, Ricardo Anibal
author_role author
author2 Leiva, Ricardo Anibal
author2_role author
dc.subject.none.fl_str_mv COVARIANCE STRUCTURE
MAXIMUM LIKELIHOOD ESTIMATES
REPEATED OBSERVATIONS
topic COVARIANCE STRUCTURE
MAXIMUM LIKELIHOOD ESTIMATES
REPEATED OBSERVATIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the problem of classification for multivariate repeated measures data with structured correlations on both time and spatial repeated measurements. This is a very important problem in many biomedical as well as in engineering field. Classification rules as well as the algorithm to compute the maximum likelihood estimates of the required parameters are given.
Fil: Roy, Anuradha. University of Texas; Estados Unidos
Fil: Leiva, Ricardo Anibal. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
description We study the problem of classification for multivariate repeated measures data with structured correlations on both time and spatial repeated measurements. This is a very important problem in many biomedical as well as in engineering field. Classification rules as well as the algorithm to compute the maximum likelihood estimates of the required parameters are given.
publishDate 2012
dc.date.none.fl_str_mv 2012-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/198706
Roy, Anuradha; Leiva, Ricardo Anibal; Classification rules for multivariate repeated measures data with equicorrelated correlation structure on both time and spatial repeated measurements; Taylor & Francis; Communications In Statistics-theory And Methods; 41; 8; 12-2012; 1411-1420
0361-0926
CONICET Digital
CONICET
url http://hdl.handle.net/11336/198706
identifier_str_mv Roy, Anuradha; Leiva, Ricardo Anibal; Classification rules for multivariate repeated measures data with equicorrelated correlation structure on both time and spatial repeated measurements; Taylor & Francis; Communications In Statistics-theory And Methods; 41; 8; 12-2012; 1411-1420
0361-0926
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/03610926.2010.530369
info:eu-repo/semantics/altIdentifier/doi/10.1080/03610926.2010.530369
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083416747933696
score 13.22299