Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function

Autores
Forzani, Liliana Maria; Martín-Reyes, F.J.; Ombrosi, Sheldy Javier
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we characterize the pairs of weights (w, v) such that the one-sided Hardy-Littlewood maximal function in dimension two is of weak-type (p, p), 1 ≤ p ≤ ∞, with respect to the pair (w, v). As an application of this result we obtain a generalization of the classic Dunford-Schwartz Ergodic Maximal Theorem for bi-parameter flows of null-preserving transformations.
Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Martín-Reyes, F.J.. Universidad de Málaga; España
Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Materia
Ergodic Maximal Theorem
One-Sided Maximal Function
Weights
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/79566

id CONICETDig_c760cd385df95865f9bbc9fd5a837431
oai_identifier_str oai:ri.conicet.gov.ar:11336/79566
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal functionForzani, Liliana MariaMartín-Reyes, F.J.Ombrosi, Sheldy JavierErgodic Maximal TheoremOne-Sided Maximal FunctionWeightshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work we characterize the pairs of weights (w, v) such that the one-sided Hardy-Littlewood maximal function in dimension two is of weak-type (p, p), 1 ≤ p ≤ ∞, with respect to the pair (w, v). As an application of this result we obtain a generalization of the classic Dunford-Schwartz Ergodic Maximal Theorem for bi-parameter flows of null-preserving transformations.Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Martín-Reyes, F.J.. Universidad de Málaga; EspañaFil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaAmerican Mathematical Society2011-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/79566Forzani, Liliana Maria; Martín-Reyes, F.J.; Ombrosi, Sheldy Javier; Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function; American Mathematical Society; Transactions Of The American Mathematical Society; 363; 4; 4-2011; 1699-17190002-9947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/tran/2011-363-04/S0002-9947-2010-05343-7/info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9947-2010-05343-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:32Zoai:ri.conicet.gov.ar:11336/79566instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:32.832CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function
title Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function
spellingShingle Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function
Forzani, Liliana Maria
Ergodic Maximal Theorem
One-Sided Maximal Function
Weights
title_short Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function
title_full Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function
title_fullStr Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function
title_full_unstemmed Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function
title_sort Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function
dc.creator.none.fl_str_mv Forzani, Liliana Maria
Martín-Reyes, F.J.
Ombrosi, Sheldy Javier
author Forzani, Liliana Maria
author_facet Forzani, Liliana Maria
Martín-Reyes, F.J.
Ombrosi, Sheldy Javier
author_role author
author2 Martín-Reyes, F.J.
Ombrosi, Sheldy Javier
author2_role author
author
dc.subject.none.fl_str_mv Ergodic Maximal Theorem
One-Sided Maximal Function
Weights
topic Ergodic Maximal Theorem
One-Sided Maximal Function
Weights
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this work we characterize the pairs of weights (w, v) such that the one-sided Hardy-Littlewood maximal function in dimension two is of weak-type (p, p), 1 ≤ p ≤ ∞, with respect to the pair (w, v). As an application of this result we obtain a generalization of the classic Dunford-Schwartz Ergodic Maximal Theorem for bi-parameter flows of null-preserving transformations.
Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Martín-Reyes, F.J.. Universidad de Málaga; España
Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
description In this work we characterize the pairs of weights (w, v) such that the one-sided Hardy-Littlewood maximal function in dimension two is of weak-type (p, p), 1 ≤ p ≤ ∞, with respect to the pair (w, v). As an application of this result we obtain a generalization of the classic Dunford-Schwartz Ergodic Maximal Theorem for bi-parameter flows of null-preserving transformations.
publishDate 2011
dc.date.none.fl_str_mv 2011-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/79566
Forzani, Liliana Maria; Martín-Reyes, F.J.; Ombrosi, Sheldy Javier; Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function; American Mathematical Society; Transactions Of The American Mathematical Society; 363; 4; 4-2011; 1699-1719
0002-9947
CONICET Digital
CONICET
url http://hdl.handle.net/11336/79566
identifier_str_mv Forzani, Liliana Maria; Martín-Reyes, F.J.; Ombrosi, Sheldy Javier; Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function; American Mathematical Society; Transactions Of The American Mathematical Society; 363; 4; 4-2011; 1699-1719
0002-9947
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/tran/2011-363-04/S0002-9947-2010-05343-7/
info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9947-2010-05343-7
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Mathematical Society
publisher.none.fl_str_mv American Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269408493305856
score 13.13397