Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function
- Autores
- Forzani, Liliana Maria; Martín-Reyes, F.J.; Ombrosi, Sheldy Javier
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we characterize the pairs of weights (w, v) such that the one-sided Hardy-Littlewood maximal function in dimension two is of weak-type (p, p), 1 ≤ p ≤ ∞, with respect to the pair (w, v). As an application of this result we obtain a generalization of the classic Dunford-Schwartz Ergodic Maximal Theorem for bi-parameter flows of null-preserving transformations.
Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Martín-Reyes, F.J.. Universidad de Málaga; España
Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina - Materia
-
Ergodic Maximal Theorem
One-Sided Maximal Function
Weights - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/79566
Ver los metadatos del registro completo
id |
CONICETDig_c760cd385df95865f9bbc9fd5a837431 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/79566 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal functionForzani, Liliana MariaMartín-Reyes, F.J.Ombrosi, Sheldy JavierErgodic Maximal TheoremOne-Sided Maximal FunctionWeightshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work we characterize the pairs of weights (w, v) such that the one-sided Hardy-Littlewood maximal function in dimension two is of weak-type (p, p), 1 ≤ p ≤ ∞, with respect to the pair (w, v). As an application of this result we obtain a generalization of the classic Dunford-Schwartz Ergodic Maximal Theorem for bi-parameter flows of null-preserving transformations.Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Martín-Reyes, F.J.. Universidad de Málaga; EspañaFil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaAmerican Mathematical Society2011-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/79566Forzani, Liliana Maria; Martín-Reyes, F.J.; Ombrosi, Sheldy Javier; Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function; American Mathematical Society; Transactions Of The American Mathematical Society; 363; 4; 4-2011; 1699-17190002-9947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/tran/2011-363-04/S0002-9947-2010-05343-7/info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9947-2010-05343-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:32Zoai:ri.conicet.gov.ar:11336/79566instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:32.832CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function |
title |
Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function |
spellingShingle |
Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function Forzani, Liliana Maria Ergodic Maximal Theorem One-Sided Maximal Function Weights |
title_short |
Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function |
title_full |
Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function |
title_fullStr |
Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function |
title_full_unstemmed |
Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function |
title_sort |
Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function |
dc.creator.none.fl_str_mv |
Forzani, Liliana Maria Martín-Reyes, F.J. Ombrosi, Sheldy Javier |
author |
Forzani, Liliana Maria |
author_facet |
Forzani, Liliana Maria Martín-Reyes, F.J. Ombrosi, Sheldy Javier |
author_role |
author |
author2 |
Martín-Reyes, F.J. Ombrosi, Sheldy Javier |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ergodic Maximal Theorem One-Sided Maximal Function Weights |
topic |
Ergodic Maximal Theorem One-Sided Maximal Function Weights |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work we characterize the pairs of weights (w, v) such that the one-sided Hardy-Littlewood maximal function in dimension two is of weak-type (p, p), 1 ≤ p ≤ ∞, with respect to the pair (w, v). As an application of this result we obtain a generalization of the classic Dunford-Schwartz Ergodic Maximal Theorem for bi-parameter flows of null-preserving transformations. Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Martín-Reyes, F.J.. Universidad de Málaga; España Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina |
description |
In this work we characterize the pairs of weights (w, v) such that the one-sided Hardy-Littlewood maximal function in dimension two is of weak-type (p, p), 1 ≤ p ≤ ∞, with respect to the pair (w, v). As an application of this result we obtain a generalization of the classic Dunford-Schwartz Ergodic Maximal Theorem for bi-parameter flows of null-preserving transformations. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/79566 Forzani, Liliana Maria; Martín-Reyes, F.J.; Ombrosi, Sheldy Javier; Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function; American Mathematical Society; Transactions Of The American Mathematical Society; 363; 4; 4-2011; 1699-1719 0002-9947 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/79566 |
identifier_str_mv |
Forzani, Liliana Maria; Martín-Reyes, F.J.; Ombrosi, Sheldy Javier; Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function; American Mathematical Society; Transactions Of The American Mathematical Society; 363; 4; 4-2011; 1699-1719 0002-9947 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/tran/2011-363-04/S0002-9947-2010-05343-7/ info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9947-2010-05343-7 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269408493305856 |
score |
13.13397 |