Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function
- Autores
- Forzani, Liliana Maria; Martín-Reyes, F.J.; Ombrosi, Sheldy Javier
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we characterize the pairs of weights (w, v) such that the one-sided Hardy-Littlewood maximal function in dimension two is of weak-type (p, p), 1 ≤ p ≤ ∞, with respect to the pair (w, v). As an application of this result we obtain a generalization of the classic Dunford-Schwartz Ergodic Maximal Theorem for bi-parameter flows of null-preserving transformations.
Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Martín-Reyes, F.J.. Universidad de Málaga; España
Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina - Materia
-
Ergodic Maximal Theorem
One-Sided Maximal Function
Weights - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/79566
Ver los metadatos del registro completo
| id |
CONICETDig_c760cd385df95865f9bbc9fd5a837431 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/79566 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal functionForzani, Liliana MariaMartín-Reyes, F.J.Ombrosi, Sheldy JavierErgodic Maximal TheoremOne-Sided Maximal FunctionWeightshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work we characterize the pairs of weights (w, v) such that the one-sided Hardy-Littlewood maximal function in dimension two is of weak-type (p, p), 1 ≤ p ≤ ∞, with respect to the pair (w, v). As an application of this result we obtain a generalization of the classic Dunford-Schwartz Ergodic Maximal Theorem for bi-parameter flows of null-preserving transformations.Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Martín-Reyes, F.J.. Universidad de Málaga; EspañaFil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaAmerican Mathematical Society2011-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/79566Forzani, Liliana Maria; Martín-Reyes, F.J.; Ombrosi, Sheldy Javier; Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function; American Mathematical Society; Transactions Of The American Mathematical Society; 363; 4; 4-2011; 1699-17190002-9947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/tran/2011-363-04/S0002-9947-2010-05343-7/info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9947-2010-05343-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:45:32Zoai:ri.conicet.gov.ar:11336/79566instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:45:33.169CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function |
| title |
Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function |
| spellingShingle |
Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function Forzani, Liliana Maria Ergodic Maximal Theorem One-Sided Maximal Function Weights |
| title_short |
Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function |
| title_full |
Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function |
| title_fullStr |
Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function |
| title_full_unstemmed |
Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function |
| title_sort |
Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function |
| dc.creator.none.fl_str_mv |
Forzani, Liliana Maria Martín-Reyes, F.J. Ombrosi, Sheldy Javier |
| author |
Forzani, Liliana Maria |
| author_facet |
Forzani, Liliana Maria Martín-Reyes, F.J. Ombrosi, Sheldy Javier |
| author_role |
author |
| author2 |
Martín-Reyes, F.J. Ombrosi, Sheldy Javier |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Ergodic Maximal Theorem One-Sided Maximal Function Weights |
| topic |
Ergodic Maximal Theorem One-Sided Maximal Function Weights |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In this work we characterize the pairs of weights (w, v) such that the one-sided Hardy-Littlewood maximal function in dimension two is of weak-type (p, p), 1 ≤ p ≤ ∞, with respect to the pair (w, v). As an application of this result we obtain a generalization of the classic Dunford-Schwartz Ergodic Maximal Theorem for bi-parameter flows of null-preserving transformations. Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Martín-Reyes, F.J.. Universidad de Málaga; España Fil: Ombrosi, Sheldy Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina |
| description |
In this work we characterize the pairs of weights (w, v) such that the one-sided Hardy-Littlewood maximal function in dimension two is of weak-type (p, p), 1 ≤ p ≤ ∞, with respect to the pair (w, v). As an application of this result we obtain a generalization of the classic Dunford-Schwartz Ergodic Maximal Theorem for bi-parameter flows of null-preserving transformations. |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/79566 Forzani, Liliana Maria; Martín-Reyes, F.J.; Ombrosi, Sheldy Javier; Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function; American Mathematical Society; Transactions Of The American Mathematical Society; 363; 4; 4-2011; 1699-1719 0002-9947 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/79566 |
| identifier_str_mv |
Forzani, Liliana Maria; Martín-Reyes, F.J.; Ombrosi, Sheldy Javier; Weighted inequalities for the two-dimensional one-sided Hardy-Littlewood maximal function; American Mathematical Society; Transactions Of The American Mathematical Society; 363; 4; 4-2011; 1699-1719 0002-9947 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/tran/2011-363-04/S0002-9947-2010-05343-7/ info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9947-2010-05343-7 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Mathematical Society |
| publisher.none.fl_str_mv |
American Mathematical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597832930426880 |
| score |
12.976206 |