Lagrangian Grassmannian in infinite dimension
- Autores
- Andruchow, Esteban; Larotonda, Gabriel Andrés
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given a complex structure J on a real (finite or infinite dimensional) Hilbert space H, we study the geometry of the Lagrangian Grassmannian Λ (H) of H, i.e. the set of closed linear subspaces L ⊂ H such that J (L) = L⊥. The complex unitary group U (HJ), consisting of the elements of the orthogonal group of H which are complex linear for the given complex structure, acts transitively on Λ (H) and induces a natural linear connection in Λ (H). It is shown that any pair of Lagrangian subspaces can be joined by a geodesic of this connection. A Finsler metric can also be introduced, if one regards subspaces L as projections pL (=the orthogonal projection onto L) or symmetries ε{lunate}L = 2 pL - I, namely measuring tangent vectors with the operator norm. We show that for this metric the Hopf-Rinow theorem is valid in Λ (H): a geodesic joining a pair of Lagrangian subspaces can be chosen to be of minimal length. A similar result holds for the unitary orbit of a Lagrangian subspace under the action of the k-Schatten unitary group (2 ≤ k ≤ ∞), with the Finsler metric given by the k-norm.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
ANALYSIS ON MANIFOLDS
COMPLEX STRUCTURE
GLOBAL ANALYSIS
LAGRANGIAN SUBSPACE
REAL AND COMPLEX DIFFERENTIAL GEOMETRY
SHORT GEODESIC
SYMPLECTIC GEOMETRY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/93033
Ver los metadatos del registro completo
| id |
CONICETDig_9a7c9debc6a766fc642829626ac7a30d |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/93033 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Lagrangian Grassmannian in infinite dimensionAndruchow, EstebanLarotonda, Gabriel AndrésANALYSIS ON MANIFOLDSCOMPLEX STRUCTUREGLOBAL ANALYSISLAGRANGIAN SUBSPACEREAL AND COMPLEX DIFFERENTIAL GEOMETRYSHORT GEODESICSYMPLECTIC GEOMETRYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given a complex structure J on a real (finite or infinite dimensional) Hilbert space H, we study the geometry of the Lagrangian Grassmannian Λ (H) of H, i.e. the set of closed linear subspaces L ⊂ H such that J (L) = L⊥. The complex unitary group U (HJ), consisting of the elements of the orthogonal group of H which are complex linear for the given complex structure, acts transitively on Λ (H) and induces a natural linear connection in Λ (H). It is shown that any pair of Lagrangian subspaces can be joined by a geodesic of this connection. A Finsler metric can also be introduced, if one regards subspaces L as projections pL (=the orthogonal projection onto L) or symmetries ε{lunate}L = 2 pL - I, namely measuring tangent vectors with the operator norm. We show that for this metric the Hopf-Rinow theorem is valid in Λ (H): a geodesic joining a pair of Lagrangian subspaces can be chosen to be of minimal length. A similar result holds for the unitary orbit of a Lagrangian subspace under the action of the k-Schatten unitary group (2 ≤ k ≤ ∞), with the Finsler metric given by the k-norm.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaElsevier Science2009-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/93033Andruchow, Esteban; Larotonda, Gabriel Andrés; Lagrangian Grassmannian in infinite dimension; Elsevier Science; Journal Of Geometry And Physics; 59; 3; 3-2009; 306-3200393-0440CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S039304400800185Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.geomphys.2008.11.004info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0808.2270info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:45:32Zoai:ri.conicet.gov.ar:11336/93033instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:45:33.203CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Lagrangian Grassmannian in infinite dimension |
| title |
Lagrangian Grassmannian in infinite dimension |
| spellingShingle |
Lagrangian Grassmannian in infinite dimension Andruchow, Esteban ANALYSIS ON MANIFOLDS COMPLEX STRUCTURE GLOBAL ANALYSIS LAGRANGIAN SUBSPACE REAL AND COMPLEX DIFFERENTIAL GEOMETRY SHORT GEODESIC SYMPLECTIC GEOMETRY |
| title_short |
Lagrangian Grassmannian in infinite dimension |
| title_full |
Lagrangian Grassmannian in infinite dimension |
| title_fullStr |
Lagrangian Grassmannian in infinite dimension |
| title_full_unstemmed |
Lagrangian Grassmannian in infinite dimension |
| title_sort |
Lagrangian Grassmannian in infinite dimension |
| dc.creator.none.fl_str_mv |
Andruchow, Esteban Larotonda, Gabriel Andrés |
| author |
Andruchow, Esteban |
| author_facet |
Andruchow, Esteban Larotonda, Gabriel Andrés |
| author_role |
author |
| author2 |
Larotonda, Gabriel Andrés |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
ANALYSIS ON MANIFOLDS COMPLEX STRUCTURE GLOBAL ANALYSIS LAGRANGIAN SUBSPACE REAL AND COMPLEX DIFFERENTIAL GEOMETRY SHORT GEODESIC SYMPLECTIC GEOMETRY |
| topic |
ANALYSIS ON MANIFOLDS COMPLEX STRUCTURE GLOBAL ANALYSIS LAGRANGIAN SUBSPACE REAL AND COMPLEX DIFFERENTIAL GEOMETRY SHORT GEODESIC SYMPLECTIC GEOMETRY |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Given a complex structure J on a real (finite or infinite dimensional) Hilbert space H, we study the geometry of the Lagrangian Grassmannian Λ (H) of H, i.e. the set of closed linear subspaces L ⊂ H such that J (L) = L⊥. The complex unitary group U (HJ), consisting of the elements of the orthogonal group of H which are complex linear for the given complex structure, acts transitively on Λ (H) and induces a natural linear connection in Λ (H). It is shown that any pair of Lagrangian subspaces can be joined by a geodesic of this connection. A Finsler metric can also be introduced, if one regards subspaces L as projections pL (=the orthogonal projection onto L) or symmetries ε{lunate}L = 2 pL - I, namely measuring tangent vectors with the operator norm. We show that for this metric the Hopf-Rinow theorem is valid in Λ (H): a geodesic joining a pair of Lagrangian subspaces can be chosen to be of minimal length. A similar result holds for the unitary orbit of a Lagrangian subspace under the action of the k-Schatten unitary group (2 ≤ k ≤ ∞), with the Finsler metric given by the k-norm. Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
| description |
Given a complex structure J on a real (finite or infinite dimensional) Hilbert space H, we study the geometry of the Lagrangian Grassmannian Λ (H) of H, i.e. the set of closed linear subspaces L ⊂ H such that J (L) = L⊥. The complex unitary group U (HJ), consisting of the elements of the orthogonal group of H which are complex linear for the given complex structure, acts transitively on Λ (H) and induces a natural linear connection in Λ (H). It is shown that any pair of Lagrangian subspaces can be joined by a geodesic of this connection. A Finsler metric can also be introduced, if one regards subspaces L as projections pL (=the orthogonal projection onto L) or symmetries ε{lunate}L = 2 pL - I, namely measuring tangent vectors with the operator norm. We show that for this metric the Hopf-Rinow theorem is valid in Λ (H): a geodesic joining a pair of Lagrangian subspaces can be chosen to be of minimal length. A similar result holds for the unitary orbit of a Lagrangian subspace under the action of the k-Schatten unitary group (2 ≤ k ≤ ∞), with the Finsler metric given by the k-norm. |
| publishDate |
2009 |
| dc.date.none.fl_str_mv |
2009-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/93033 Andruchow, Esteban; Larotonda, Gabriel Andrés; Lagrangian Grassmannian in infinite dimension; Elsevier Science; Journal Of Geometry And Physics; 59; 3; 3-2009; 306-320 0393-0440 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/93033 |
| identifier_str_mv |
Andruchow, Esteban; Larotonda, Gabriel Andrés; Lagrangian Grassmannian in infinite dimension; Elsevier Science; Journal Of Geometry And Physics; 59; 3; 3-2009; 306-320 0393-0440 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S039304400800185X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.geomphys.2008.11.004 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0808.2270 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier Science |
| publisher.none.fl_str_mv |
Elsevier Science |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597832948252672 |
| score |
13.24909 |