On the symplectic curvature flow for locally homogeneous manifolds
- Autores
- Lauret, Jorge Ruben; Will, Cynthia Eugenia
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Recently, J. Streets and G. Tian introduced a natural way to evolve an almost-Kähler manifold called the symplectic curvature flow, in which the metric, the symplectic structure and the almost-complex structure are all evolving. We study in this paper different aspects of the flow on locally homogeneous manifolds, including long-time existence, solitons, regularity and convergence. We develop in detail two large classes of Lie groups, which are relatively simple from a structural point of view but yet geometrically rich and exotic: solvable Lie groups with a codimension one abelian normal subgroup and a construction attached to each left symmetric algebra. As an application, we exhibit a soliton structure on most of symplectic surfaces which are Lie groups. A family of ancient solutions which develop a finite time singularity was found; neither their Chern scalar nor their scalar curvature are monotone along the flow and they converge in the pointed sense to a (non-Kähler) shrinking soliton solution on the same Lie group.
Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Will, Cynthia Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
symplectic Geometry
curvature flow - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/59793
Ver los metadatos del registro completo
id |
CONICETDig_ce0aa1fb87bc4c48ad5e097630ffdee2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/59793 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the symplectic curvature flow for locally homogeneous manifoldsLauret, Jorge RubenWill, Cynthia Eugeniasymplectic Geometrycurvature flowhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Recently, J. Streets and G. Tian introduced a natural way to evolve an almost-Kähler manifold called the symplectic curvature flow, in which the metric, the symplectic structure and the almost-complex structure are all evolving. We study in this paper different aspects of the flow on locally homogeneous manifolds, including long-time existence, solitons, regularity and convergence. We develop in detail two large classes of Lie groups, which are relatively simple from a structural point of view but yet geometrically rich and exotic: solvable Lie groups with a codimension one abelian normal subgroup and a construction attached to each left symmetric algebra. As an application, we exhibit a soliton structure on most of symplectic surfaces which are Lie groups. A family of ancient solutions which develop a finite time singularity was found; neither their Chern scalar nor their scalar curvature are monotone along the flow and they converge in the pointed sense to a (non-Kähler) shrinking soliton solution on the same Lie group.Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Will, Cynthia Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaInternational Press Boston2017-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59793Lauret, Jorge Ruben; Will, Cynthia Eugenia; On the symplectic curvature flow for locally homogeneous manifolds; International Press Boston; Journal Of Symplectic Geometry; 15; 1; 2-2017; 1-491527-5256CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.intlpress.com/site/pub/pages/journals/items/jsg/content/vols/0015/0001/a001/index.htmlinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1405.6065info:eu-repo/semantics/altIdentifier/doi/10.4310/JSG.2017.v15.n1.a1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:14:49Zoai:ri.conicet.gov.ar:11336/59793instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:14:50.017CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the symplectic curvature flow for locally homogeneous manifolds |
title |
On the symplectic curvature flow for locally homogeneous manifolds |
spellingShingle |
On the symplectic curvature flow for locally homogeneous manifolds Lauret, Jorge Ruben symplectic Geometry curvature flow |
title_short |
On the symplectic curvature flow for locally homogeneous manifolds |
title_full |
On the symplectic curvature flow for locally homogeneous manifolds |
title_fullStr |
On the symplectic curvature flow for locally homogeneous manifolds |
title_full_unstemmed |
On the symplectic curvature flow for locally homogeneous manifolds |
title_sort |
On the symplectic curvature flow for locally homogeneous manifolds |
dc.creator.none.fl_str_mv |
Lauret, Jorge Ruben Will, Cynthia Eugenia |
author |
Lauret, Jorge Ruben |
author_facet |
Lauret, Jorge Ruben Will, Cynthia Eugenia |
author_role |
author |
author2 |
Will, Cynthia Eugenia |
author2_role |
author |
dc.subject.none.fl_str_mv |
symplectic Geometry curvature flow |
topic |
symplectic Geometry curvature flow |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Recently, J. Streets and G. Tian introduced a natural way to evolve an almost-Kähler manifold called the symplectic curvature flow, in which the metric, the symplectic structure and the almost-complex structure are all evolving. We study in this paper different aspects of the flow on locally homogeneous manifolds, including long-time existence, solitons, regularity and convergence. We develop in detail two large classes of Lie groups, which are relatively simple from a structural point of view but yet geometrically rich and exotic: solvable Lie groups with a codimension one abelian normal subgroup and a construction attached to each left symmetric algebra. As an application, we exhibit a soliton structure on most of symplectic surfaces which are Lie groups. A family of ancient solutions which develop a finite time singularity was found; neither their Chern scalar nor their scalar curvature are monotone along the flow and they converge in the pointed sense to a (non-Kähler) shrinking soliton solution on the same Lie group. Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Will, Cynthia Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
Recently, J. Streets and G. Tian introduced a natural way to evolve an almost-Kähler manifold called the symplectic curvature flow, in which the metric, the symplectic structure and the almost-complex structure are all evolving. We study in this paper different aspects of the flow on locally homogeneous manifolds, including long-time existence, solitons, regularity and convergence. We develop in detail two large classes of Lie groups, which are relatively simple from a structural point of view but yet geometrically rich and exotic: solvable Lie groups with a codimension one abelian normal subgroup and a construction attached to each left symmetric algebra. As an application, we exhibit a soliton structure on most of symplectic surfaces which are Lie groups. A family of ancient solutions which develop a finite time singularity was found; neither their Chern scalar nor their scalar curvature are monotone along the flow and they converge in the pointed sense to a (non-Kähler) shrinking soliton solution on the same Lie group. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/59793 Lauret, Jorge Ruben; Will, Cynthia Eugenia; On the symplectic curvature flow for locally homogeneous manifolds; International Press Boston; Journal Of Symplectic Geometry; 15; 1; 2-2017; 1-49 1527-5256 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/59793 |
identifier_str_mv |
Lauret, Jorge Ruben; Will, Cynthia Eugenia; On the symplectic curvature flow for locally homogeneous manifolds; International Press Boston; Journal Of Symplectic Geometry; 15; 1; 2-2017; 1-49 1527-5256 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.intlpress.com/site/pub/pages/journals/items/jsg/content/vols/0015/0001/a001/index.html info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1405.6065 info:eu-repo/semantics/altIdentifier/doi/10.4310/JSG.2017.v15.n1.a1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
International Press Boston |
publisher.none.fl_str_mv |
International Press Boston |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083295953027072 |
score |
13.22299 |