The Mauthner-cell circuit of fish as a model system for startle plasticity
- Autores
- Medan, Violeta; Preuss, Thomas
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Mauthner-cell (M-cell) system of teleost fish has a long history as an experimental model for addressing a wide range of neurobiological questions. Principles derived from studies on this system have contributed significantly to our understanding at multiple levels, from mechanisms of synaptic transmission and synaptic plasticity to the concepts of a decision neuron that initiates key aspects of the startle behavior. Here we will review recent work that focuses on the neurophysiological and neuropharmacological basis for modifications in the M-cell circuit. After summarizing the main excitatory and inhibitory inputs to the M-cell, we review experiments showing startle response modulation by temperature, social status, and sensory filtering. Although very different in nature, actions of these three sources of modulation converge in the M-cell network. Mechanisms of modulation include altering the excitability of the M-cell itself as well as changes in excitatory and inhibitor drive, highlighting the role of balanced excitation and inhibition for escape decisions. One of the most extensively studied forms of startle plasticity in vertebrates is prepulse inhibition (PPI), a sensorimotor gating phenomenon, which is impaired in several information processing disorders. Finally, we review recent work in the M-cell system which focuses on the cellular mechanisms of PPI and its modulation by serotonin and dopamine.
Fil: Medan, Violeta. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina
Fil: Preuss, Thomas. City University Of New York. Hunter College; Estados Unidos - Materia
-
DOPAMINE
MAUTHNER CELL
PREPULSE INHIBITION
SEROTONIN
SOCIAL STATUS
STARTLE RESPONSE
TEMPERATURE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/84949
Ver los metadatos del registro completo
id |
CONICETDig_968f6f65caab4f561ee693f9a45602c5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/84949 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The Mauthner-cell circuit of fish as a model system for startle plasticityMedan, VioletaPreuss, ThomasDOPAMINEMAUTHNER CELLPREPULSE INHIBITIONSEROTONINSOCIAL STATUSSTARTLE RESPONSETEMPERATUREhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The Mauthner-cell (M-cell) system of teleost fish has a long history as an experimental model for addressing a wide range of neurobiological questions. Principles derived from studies on this system have contributed significantly to our understanding at multiple levels, from mechanisms of synaptic transmission and synaptic plasticity to the concepts of a decision neuron that initiates key aspects of the startle behavior. Here we will review recent work that focuses on the neurophysiological and neuropharmacological basis for modifications in the M-cell circuit. After summarizing the main excitatory and inhibitory inputs to the M-cell, we review experiments showing startle response modulation by temperature, social status, and sensory filtering. Although very different in nature, actions of these three sources of modulation converge in the M-cell network. Mechanisms of modulation include altering the excitability of the M-cell itself as well as changes in excitatory and inhibitor drive, highlighting the role of balanced excitation and inhibition for escape decisions. One of the most extensively studied forms of startle plasticity in vertebrates is prepulse inhibition (PPI), a sensorimotor gating phenomenon, which is impaired in several information processing disorders. Finally, we review recent work in the M-cell system which focuses on the cellular mechanisms of PPI and its modulation by serotonin and dopamine.Fil: Medan, Violeta. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Preuss, Thomas. City University Of New York. Hunter College; Estados UnidosElsevier2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84949Medan, Violeta; Preuss, Thomas; The Mauthner-cell circuit of fish as a model system for startle plasticity; Elsevier; Journal of Physiology; 108; 2-3; 4-2014; 129-1400928-4257CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jphysparis.2014.07.006info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0928425714000333info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:39:43Zoai:ri.conicet.gov.ar:11336/84949instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:39:43.953CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The Mauthner-cell circuit of fish as a model system for startle plasticity |
title |
The Mauthner-cell circuit of fish as a model system for startle plasticity |
spellingShingle |
The Mauthner-cell circuit of fish as a model system for startle plasticity Medan, Violeta DOPAMINE MAUTHNER CELL PREPULSE INHIBITION SEROTONIN SOCIAL STATUS STARTLE RESPONSE TEMPERATURE |
title_short |
The Mauthner-cell circuit of fish as a model system for startle plasticity |
title_full |
The Mauthner-cell circuit of fish as a model system for startle plasticity |
title_fullStr |
The Mauthner-cell circuit of fish as a model system for startle plasticity |
title_full_unstemmed |
The Mauthner-cell circuit of fish as a model system for startle plasticity |
title_sort |
The Mauthner-cell circuit of fish as a model system for startle plasticity |
dc.creator.none.fl_str_mv |
Medan, Violeta Preuss, Thomas |
author |
Medan, Violeta |
author_facet |
Medan, Violeta Preuss, Thomas |
author_role |
author |
author2 |
Preuss, Thomas |
author2_role |
author |
dc.subject.none.fl_str_mv |
DOPAMINE MAUTHNER CELL PREPULSE INHIBITION SEROTONIN SOCIAL STATUS STARTLE RESPONSE TEMPERATURE |
topic |
DOPAMINE MAUTHNER CELL PREPULSE INHIBITION SEROTONIN SOCIAL STATUS STARTLE RESPONSE TEMPERATURE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The Mauthner-cell (M-cell) system of teleost fish has a long history as an experimental model for addressing a wide range of neurobiological questions. Principles derived from studies on this system have contributed significantly to our understanding at multiple levels, from mechanisms of synaptic transmission and synaptic plasticity to the concepts of a decision neuron that initiates key aspects of the startle behavior. Here we will review recent work that focuses on the neurophysiological and neuropharmacological basis for modifications in the M-cell circuit. After summarizing the main excitatory and inhibitory inputs to the M-cell, we review experiments showing startle response modulation by temperature, social status, and sensory filtering. Although very different in nature, actions of these three sources of modulation converge in the M-cell network. Mechanisms of modulation include altering the excitability of the M-cell itself as well as changes in excitatory and inhibitor drive, highlighting the role of balanced excitation and inhibition for escape decisions. One of the most extensively studied forms of startle plasticity in vertebrates is prepulse inhibition (PPI), a sensorimotor gating phenomenon, which is impaired in several information processing disorders. Finally, we review recent work in the M-cell system which focuses on the cellular mechanisms of PPI and its modulation by serotonin and dopamine. Fil: Medan, Violeta. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina Fil: Preuss, Thomas. City University Of New York. Hunter College; Estados Unidos |
description |
The Mauthner-cell (M-cell) system of teleost fish has a long history as an experimental model for addressing a wide range of neurobiological questions. Principles derived from studies on this system have contributed significantly to our understanding at multiple levels, from mechanisms of synaptic transmission and synaptic plasticity to the concepts of a decision neuron that initiates key aspects of the startle behavior. Here we will review recent work that focuses on the neurophysiological and neuropharmacological basis for modifications in the M-cell circuit. After summarizing the main excitatory and inhibitory inputs to the M-cell, we review experiments showing startle response modulation by temperature, social status, and sensory filtering. Although very different in nature, actions of these three sources of modulation converge in the M-cell network. Mechanisms of modulation include altering the excitability of the M-cell itself as well as changes in excitatory and inhibitor drive, highlighting the role of balanced excitation and inhibition for escape decisions. One of the most extensively studied forms of startle plasticity in vertebrates is prepulse inhibition (PPI), a sensorimotor gating phenomenon, which is impaired in several information processing disorders. Finally, we review recent work in the M-cell system which focuses on the cellular mechanisms of PPI and its modulation by serotonin and dopamine. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/84949 Medan, Violeta; Preuss, Thomas; The Mauthner-cell circuit of fish as a model system for startle plasticity; Elsevier; Journal of Physiology; 108; 2-3; 4-2014; 129-140 0928-4257 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/84949 |
identifier_str_mv |
Medan, Violeta; Preuss, Thomas; The Mauthner-cell circuit of fish as a model system for startle plasticity; Elsevier; Journal of Physiology; 108; 2-3; 4-2014; 129-140 0928-4257 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jphysparis.2014.07.006 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0928425714000333 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614423257284608 |
score |
13.070432 |