A computational model on the goldfish Mauthner cell.

Autores
Mäki Marttunen, Tuomo; Medan, Violeta
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Integration of multimodal information is of key importance to generate adaptive behavior. However, our understanding of how multimodal integration is implemented at the dendritic level is still scant. We address this question in the Mauthner-cell (M-cell), the “decision making element” [1] of the startle escape network of goldfish. The M-cell has two main aspiny dendritic branches arising from the soma, the lateral dendrite and the ventral dendrite, where the former receives auditory input [2] and the latter input from the visual system [3]. Both dendrites are amenable to intracellular recording in vivo, which offers the opportunity to study whether the propagation of auditory and visual signals is similar, or if different filtering properties are implemented in each dendrite. To describe the cell behavior, we use a Hodgkin-Huxley type of model [4, 5] for the spike initiation zone, combined with a realistic dendritic morphology reconstructed from intracellular staining images. We fit the model parameters to intracellular recordings, where the cell is stimulated with square and ramp pulses injected at the soma, and responses are measured at a fixed location in the proximal lateral dendrite. The obtained model provides a simulation framework for studying the signal propagation along the cell dendrites and soma. Simulations of impulse decay along passive dendrites in orthodromic and antidromic directions are compared with the corresponding experimental observations. In the orthodromic direction, the model correctly predicts that the spatial decay is larger on the ventral than on the lateral dendrite, due to the differences in the dendrite diameters. However, recordings of signals propagating antidromically in the ventral dendrite show smaller spatial decay than those in the lateral dendrite, opposite to the model predictions. Our preliminary results suggest that passive dendrites alone are not enough to explain the experimentally observed spatial decay in the two different directions. By contrast, we found that the application of voltage-gated ion channels to the model of the ventral dendrite, even with very small maximal conductances, could lead to correctly reproducing the observed signal propagation properties. Although traditionally the soma and dendrites of the M-cell are considered to be purely passive, voltage-dependent conductances have been observed on the lateral dendrite [6]. To make sure the results are not an artifact of a certain complex dendrite morphology, we confirm our findings using an approximative, simple dendritic morphology. Our results highlight 1) the importance of including realistic morphology on modeling studies of neuron behavior; 2) the possibility of specialization of the dendritic arbors within the same neuron depending on the input they receive; and 3) the possibility of computationally examining the existence of active conductances in neurons that do not produce dendritic spikes. The implications of the existence of active dendritic compartments for the cell functioning are discussed in the context of the integration capabilities of single neurons.
Fil: Mäki Marttunen, Tuomo. Universidad de Tampere; Finlandia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; Argentina
Fil: Medan, Violeta. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Materia
Mauthner cell
Computational modelling
Dendritic filtering
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/84954

id CONICETDig_49f17aac274daf98e52c4ebbbcc09db6
oai_identifier_str oai:ri.conicet.gov.ar:11336/84954
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A computational model on the goldfish Mauthner cell.Mäki Marttunen, TuomoMedan, VioletaMauthner cellComputational modellingDendritic filteringhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Integration of multimodal information is of key importance to generate adaptive behavior. However, our understanding of how multimodal integration is implemented at the dendritic level is still scant. We address this question in the Mauthner-cell (M-cell), the “decision making element” [1] of the startle escape network of goldfish. The M-cell has two main aspiny dendritic branches arising from the soma, the lateral dendrite and the ventral dendrite, where the former receives auditory input [2] and the latter input from the visual system [3]. Both dendrites are amenable to intracellular recording in vivo, which offers the opportunity to study whether the propagation of auditory and visual signals is similar, or if different filtering properties are implemented in each dendrite. To describe the cell behavior, we use a Hodgkin-Huxley type of model [4, 5] for the spike initiation zone, combined with a realistic dendritic morphology reconstructed from intracellular staining images. We fit the model parameters to intracellular recordings, where the cell is stimulated with square and ramp pulses injected at the soma, and responses are measured at a fixed location in the proximal lateral dendrite. The obtained model provides a simulation framework for studying the signal propagation along the cell dendrites and soma. Simulations of impulse decay along passive dendrites in orthodromic and antidromic directions are compared with the corresponding experimental observations. In the orthodromic direction, the model correctly predicts that the spatial decay is larger on the ventral than on the lateral dendrite, due to the differences in the dendrite diameters. However, recordings of signals propagating antidromically in the ventral dendrite show smaller spatial decay than those in the lateral dendrite, opposite to the model predictions. Our preliminary results suggest that passive dendrites alone are not enough to explain the experimentally observed spatial decay in the two different directions. By contrast, we found that the application of voltage-gated ion channels to the model of the ventral dendrite, even with very small maximal conductances, could lead to correctly reproducing the observed signal propagation properties. Although traditionally the soma and dendrites of the M-cell are considered to be purely passive, voltage-dependent conductances have been observed on the lateral dendrite [6]. To make sure the results are not an artifact of a certain complex dendrite morphology, we confirm our findings using an approximative, simple dendritic morphology. Our results highlight 1) the importance of including realistic morphology on modeling studies of neuron behavior; 2) the possibility of specialization of the dendritic arbors within the same neuron depending on the input they receive; and 3) the possibility of computationally examining the existence of active conductances in neurons that do not produce dendritic spikes. The implications of the existence of active dendritic compartments for the cell functioning are discussed in the context of the integration capabilities of single neurons.Fil: Mäki Marttunen, Tuomo. Universidad de Tampere; Finlandia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; ArgentinaFil: Medan, Violeta. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaBioMed Central2014-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84954Mäki Marttunen, Tuomo; Medan, Violeta; A computational model on the goldfish Mauthner cell.; BioMed Central; Bmc Neuroscience; 15; 7-2014; 1-21471-2202CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1186/1471-2202-15-S1-P97info:eu-repo/semantics/altIdentifier/url/https://bmcneurosci.biomedcentral.com/articles/10.1186/1471-2202-15-S1-P97info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:54Zoai:ri.conicet.gov.ar:11336/84954instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:54.331CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A computational model on the goldfish Mauthner cell.
title A computational model on the goldfish Mauthner cell.
spellingShingle A computational model on the goldfish Mauthner cell.
Mäki Marttunen, Tuomo
Mauthner cell
Computational modelling
Dendritic filtering
title_short A computational model on the goldfish Mauthner cell.
title_full A computational model on the goldfish Mauthner cell.
title_fullStr A computational model on the goldfish Mauthner cell.
title_full_unstemmed A computational model on the goldfish Mauthner cell.
title_sort A computational model on the goldfish Mauthner cell.
dc.creator.none.fl_str_mv Mäki Marttunen, Tuomo
Medan, Violeta
author Mäki Marttunen, Tuomo
author_facet Mäki Marttunen, Tuomo
Medan, Violeta
author_role author
author2 Medan, Violeta
author2_role author
dc.subject.none.fl_str_mv Mauthner cell
Computational modelling
Dendritic filtering
topic Mauthner cell
Computational modelling
Dendritic filtering
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Integration of multimodal information is of key importance to generate adaptive behavior. However, our understanding of how multimodal integration is implemented at the dendritic level is still scant. We address this question in the Mauthner-cell (M-cell), the “decision making element” [1] of the startle escape network of goldfish. The M-cell has two main aspiny dendritic branches arising from the soma, the lateral dendrite and the ventral dendrite, where the former receives auditory input [2] and the latter input from the visual system [3]. Both dendrites are amenable to intracellular recording in vivo, which offers the opportunity to study whether the propagation of auditory and visual signals is similar, or if different filtering properties are implemented in each dendrite. To describe the cell behavior, we use a Hodgkin-Huxley type of model [4, 5] for the spike initiation zone, combined with a realistic dendritic morphology reconstructed from intracellular staining images. We fit the model parameters to intracellular recordings, where the cell is stimulated with square and ramp pulses injected at the soma, and responses are measured at a fixed location in the proximal lateral dendrite. The obtained model provides a simulation framework for studying the signal propagation along the cell dendrites and soma. Simulations of impulse decay along passive dendrites in orthodromic and antidromic directions are compared with the corresponding experimental observations. In the orthodromic direction, the model correctly predicts that the spatial decay is larger on the ventral than on the lateral dendrite, due to the differences in the dendrite diameters. However, recordings of signals propagating antidromically in the ventral dendrite show smaller spatial decay than those in the lateral dendrite, opposite to the model predictions. Our preliminary results suggest that passive dendrites alone are not enough to explain the experimentally observed spatial decay in the two different directions. By contrast, we found that the application of voltage-gated ion channels to the model of the ventral dendrite, even with very small maximal conductances, could lead to correctly reproducing the observed signal propagation properties. Although traditionally the soma and dendrites of the M-cell are considered to be purely passive, voltage-dependent conductances have been observed on the lateral dendrite [6]. To make sure the results are not an artifact of a certain complex dendrite morphology, we confirm our findings using an approximative, simple dendritic morphology. Our results highlight 1) the importance of including realistic morphology on modeling studies of neuron behavior; 2) the possibility of specialization of the dendritic arbors within the same neuron depending on the input they receive; and 3) the possibility of computationally examining the existence of active conductances in neurons that do not produce dendritic spikes. The implications of the existence of active dendritic compartments for the cell functioning are discussed in the context of the integration capabilities of single neurons.
Fil: Mäki Marttunen, Tuomo. Universidad de Tampere; Finlandia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; Argentina
Fil: Medan, Violeta. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
description Integration of multimodal information is of key importance to generate adaptive behavior. However, our understanding of how multimodal integration is implemented at the dendritic level is still scant. We address this question in the Mauthner-cell (M-cell), the “decision making element” [1] of the startle escape network of goldfish. The M-cell has two main aspiny dendritic branches arising from the soma, the lateral dendrite and the ventral dendrite, where the former receives auditory input [2] and the latter input from the visual system [3]. Both dendrites are amenable to intracellular recording in vivo, which offers the opportunity to study whether the propagation of auditory and visual signals is similar, or if different filtering properties are implemented in each dendrite. To describe the cell behavior, we use a Hodgkin-Huxley type of model [4, 5] for the spike initiation zone, combined with a realistic dendritic morphology reconstructed from intracellular staining images. We fit the model parameters to intracellular recordings, where the cell is stimulated with square and ramp pulses injected at the soma, and responses are measured at a fixed location in the proximal lateral dendrite. The obtained model provides a simulation framework for studying the signal propagation along the cell dendrites and soma. Simulations of impulse decay along passive dendrites in orthodromic and antidromic directions are compared with the corresponding experimental observations. In the orthodromic direction, the model correctly predicts that the spatial decay is larger on the ventral than on the lateral dendrite, due to the differences in the dendrite diameters. However, recordings of signals propagating antidromically in the ventral dendrite show smaller spatial decay than those in the lateral dendrite, opposite to the model predictions. Our preliminary results suggest that passive dendrites alone are not enough to explain the experimentally observed spatial decay in the two different directions. By contrast, we found that the application of voltage-gated ion channels to the model of the ventral dendrite, even with very small maximal conductances, could lead to correctly reproducing the observed signal propagation properties. Although traditionally the soma and dendrites of the M-cell are considered to be purely passive, voltage-dependent conductances have been observed on the lateral dendrite [6]. To make sure the results are not an artifact of a certain complex dendrite morphology, we confirm our findings using an approximative, simple dendritic morphology. Our results highlight 1) the importance of including realistic morphology on modeling studies of neuron behavior; 2) the possibility of specialization of the dendritic arbors within the same neuron depending on the input they receive; and 3) the possibility of computationally examining the existence of active conductances in neurons that do not produce dendritic spikes. The implications of the existence of active dendritic compartments for the cell functioning are discussed in the context of the integration capabilities of single neurons.
publishDate 2014
dc.date.none.fl_str_mv 2014-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/84954
Mäki Marttunen, Tuomo; Medan, Violeta; A computational model on the goldfish Mauthner cell.; BioMed Central; Bmc Neuroscience; 15; 7-2014; 1-2
1471-2202
CONICET Digital
CONICET
url http://hdl.handle.net/11336/84954
identifier_str_mv Mäki Marttunen, Tuomo; Medan, Violeta; A computational model on the goldfish Mauthner cell.; BioMed Central; Bmc Neuroscience; 15; 7-2014; 1-2
1471-2202
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1186/1471-2202-15-S1-P97
info:eu-repo/semantics/altIdentifier/url/https://bmcneurosci.biomedcentral.com/articles/10.1186/1471-2202-15-S1-P97
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv BioMed Central
publisher.none.fl_str_mv BioMed Central
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613620765294592
score 13.070432