Efficient approximation of the solution of certain nonlinear reaction-diffusion equations with small absorption
- Autores
- Dratman, Ezequiel
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the positive stationary solutions of a standard finite-difference discretization of the semilinear heat equation with nonlinear Neumann boundary conditions. We prove that, if the absorption is small enough, compared with the flux in the boundary, there exists a unique solution of such a discretization, which approximates the unique positive stationary solution of the “continuous” equation. Furthermore, we exhibit an algorithm computing an ε-approximation of such a solution by means of a homotopy continuation method. The cost of our algorithm is linear in the number of nodes involved in the discretization and the logarithm of the number of digits of approximation required.
Fil: Dratman, Ezequiel. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Two-Point Boundary-Value Problem
Stationary Solution
Homotopy Continuation
Complexity - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/24826
Ver los metadatos del registro completo
id |
CONICETDig_967208447735f4082f254e749216ad78 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/24826 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Efficient approximation of the solution of certain nonlinear reaction-diffusion equations with small absorptionDratman, EzequielTwo-Point Boundary-Value ProblemStationary SolutionHomotopy ContinuationComplexityhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the positive stationary solutions of a standard finite-difference discretization of the semilinear heat equation with nonlinear Neumann boundary conditions. We prove that, if the absorption is small enough, compared with the flux in the boundary, there exists a unique solution of such a discretization, which approximates the unique positive stationary solution of the “continuous” equation. Furthermore, we exhibit an algorithm computing an ε-approximation of such a solution by means of a homotopy continuation method. The cost of our algorithm is linear in the number of nodes involved in the discretization and the logarithm of the number of digits of approximation required.Fil: Dratman, Ezequiel. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2013-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/24826Dratman, Ezequiel; Efficient approximation of the solution of certain nonlinear reaction-diffusion equations with small absorption; Elsevier; Journal Of Complexity; 29; 3-4; 3-2013; 263-2820885-064XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0885064X13000186info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jco.2013.03.003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:56:42Zoai:ri.conicet.gov.ar:11336/24826instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:56:42.779CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Efficient approximation of the solution of certain nonlinear reaction-diffusion equations with small absorption |
title |
Efficient approximation of the solution of certain nonlinear reaction-diffusion equations with small absorption |
spellingShingle |
Efficient approximation of the solution of certain nonlinear reaction-diffusion equations with small absorption Dratman, Ezequiel Two-Point Boundary-Value Problem Stationary Solution Homotopy Continuation Complexity |
title_short |
Efficient approximation of the solution of certain nonlinear reaction-diffusion equations with small absorption |
title_full |
Efficient approximation of the solution of certain nonlinear reaction-diffusion equations with small absorption |
title_fullStr |
Efficient approximation of the solution of certain nonlinear reaction-diffusion equations with small absorption |
title_full_unstemmed |
Efficient approximation of the solution of certain nonlinear reaction-diffusion equations with small absorption |
title_sort |
Efficient approximation of the solution of certain nonlinear reaction-diffusion equations with small absorption |
dc.creator.none.fl_str_mv |
Dratman, Ezequiel |
author |
Dratman, Ezequiel |
author_facet |
Dratman, Ezequiel |
author_role |
author |
dc.subject.none.fl_str_mv |
Two-Point Boundary-Value Problem Stationary Solution Homotopy Continuation Complexity |
topic |
Two-Point Boundary-Value Problem Stationary Solution Homotopy Continuation Complexity |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the positive stationary solutions of a standard finite-difference discretization of the semilinear heat equation with nonlinear Neumann boundary conditions. We prove that, if the absorption is small enough, compared with the flux in the boundary, there exists a unique solution of such a discretization, which approximates the unique positive stationary solution of the “continuous” equation. Furthermore, we exhibit an algorithm computing an ε-approximation of such a solution by means of a homotopy continuation method. The cost of our algorithm is linear in the number of nodes involved in the discretization and the logarithm of the number of digits of approximation required. Fil: Dratman, Ezequiel. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We study the positive stationary solutions of a standard finite-difference discretization of the semilinear heat equation with nonlinear Neumann boundary conditions. We prove that, if the absorption is small enough, compared with the flux in the boundary, there exists a unique solution of such a discretization, which approximates the unique positive stationary solution of the “continuous” equation. Furthermore, we exhibit an algorithm computing an ε-approximation of such a solution by means of a homotopy continuation method. The cost of our algorithm is linear in the number of nodes involved in the discretization and the logarithm of the number of digits of approximation required. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/24826 Dratman, Ezequiel; Efficient approximation of the solution of certain nonlinear reaction-diffusion equations with small absorption; Elsevier; Journal Of Complexity; 29; 3-4; 3-2013; 263-282 0885-064X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/24826 |
identifier_str_mv |
Dratman, Ezequiel; Efficient approximation of the solution of certain nonlinear reaction-diffusion equations with small absorption; Elsevier; Journal Of Complexity; 29; 3-4; 3-2013; 263-282 0885-064X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0885064X13000186 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jco.2013.03.003 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613701653495808 |
score |
13.070432 |