Numeric vs. symbolic homotopy algorithms in polynomial system solving: A case study
- Autores
- De Leo, M.; Dratman, E.; Matera, G.
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider a family of polynomial systems which arises in the analysis of the stationary solutions of a standard discretization of certain semi-linear second-order parabolic partial differential equations. We prove that this family is well-conditioned from the numeric point of view, and ill-conditioned from the symbolic point of view. We exhibit a polynomial-time numeric algorithm solving any member of this family, which significantly contrasts the exponential behavior of all known symbolic algorithms solving a generic instance of this family of systems. © 2005 Elsevier Inc. All rights reserved.
Fil:De Leo, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Dratman, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Matera, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Complexity 2005;21(4):502-531
- Materia
-
Complexity
Conditioning
Homotopy algorithms
Polynomial system solving
Semi-linear parabolic problems
Stationary solutions
Algorithms
Boundary value problems
Mathematical models
Matrix algebra
Partial differential equations
Polynomials
Set theory
Homotopy algorithms
Polynomial system solving
Semi linear parabolic problems
Stationary solutions
Computational complexity - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0885064X_v21_n4_p502_DeLeo
Ver los metadatos del registro completo
id |
BDUBAFCEN_505909f212d71085781b793bae3f1f1d |
---|---|
oai_identifier_str |
paperaa:paper_0885064X_v21_n4_p502_DeLeo |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Numeric vs. symbolic homotopy algorithms in polynomial system solving: A case studyDe Leo, M.Dratman, E.Matera, G.ComplexityConditioningHomotopy algorithmsPolynomial system solvingSemi-linear parabolic problemsStationary solutionsAlgorithmsBoundary value problemsMathematical modelsMatrix algebraPartial differential equationsPolynomialsSet theoryHomotopy algorithmsPolynomial system solvingSemi linear parabolic problemsStationary solutionsComputational complexityWe consider a family of polynomial systems which arises in the analysis of the stationary solutions of a standard discretization of certain semi-linear second-order parabolic partial differential equations. We prove that this family is well-conditioned from the numeric point of view, and ill-conditioned from the symbolic point of view. We exhibit a polynomial-time numeric algorithm solving any member of this family, which significantly contrasts the exponential behavior of all known symbolic algorithms solving a generic instance of this family of systems. © 2005 Elsevier Inc. All rights reserved.Fil:De Leo, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Dratman, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Matera, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2005info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0885064X_v21_n4_p502_DeLeoJ. Complexity 2005;21(4):502-531reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:00Zpaperaa:paper_0885064X_v21_n4_p502_DeLeoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:01.558Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Numeric vs. symbolic homotopy algorithms in polynomial system solving: A case study |
title |
Numeric vs. symbolic homotopy algorithms in polynomial system solving: A case study |
spellingShingle |
Numeric vs. symbolic homotopy algorithms in polynomial system solving: A case study De Leo, M. Complexity Conditioning Homotopy algorithms Polynomial system solving Semi-linear parabolic problems Stationary solutions Algorithms Boundary value problems Mathematical models Matrix algebra Partial differential equations Polynomials Set theory Homotopy algorithms Polynomial system solving Semi linear parabolic problems Stationary solutions Computational complexity |
title_short |
Numeric vs. symbolic homotopy algorithms in polynomial system solving: A case study |
title_full |
Numeric vs. symbolic homotopy algorithms in polynomial system solving: A case study |
title_fullStr |
Numeric vs. symbolic homotopy algorithms in polynomial system solving: A case study |
title_full_unstemmed |
Numeric vs. symbolic homotopy algorithms in polynomial system solving: A case study |
title_sort |
Numeric vs. symbolic homotopy algorithms in polynomial system solving: A case study |
dc.creator.none.fl_str_mv |
De Leo, M. Dratman, E. Matera, G. |
author |
De Leo, M. |
author_facet |
De Leo, M. Dratman, E. Matera, G. |
author_role |
author |
author2 |
Dratman, E. Matera, G. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Complexity Conditioning Homotopy algorithms Polynomial system solving Semi-linear parabolic problems Stationary solutions Algorithms Boundary value problems Mathematical models Matrix algebra Partial differential equations Polynomials Set theory Homotopy algorithms Polynomial system solving Semi linear parabolic problems Stationary solutions Computational complexity |
topic |
Complexity Conditioning Homotopy algorithms Polynomial system solving Semi-linear parabolic problems Stationary solutions Algorithms Boundary value problems Mathematical models Matrix algebra Partial differential equations Polynomials Set theory Homotopy algorithms Polynomial system solving Semi linear parabolic problems Stationary solutions Computational complexity |
dc.description.none.fl_txt_mv |
We consider a family of polynomial systems which arises in the analysis of the stationary solutions of a standard discretization of certain semi-linear second-order parabolic partial differential equations. We prove that this family is well-conditioned from the numeric point of view, and ill-conditioned from the symbolic point of view. We exhibit a polynomial-time numeric algorithm solving any member of this family, which significantly contrasts the exponential behavior of all known symbolic algorithms solving a generic instance of this family of systems. © 2005 Elsevier Inc. All rights reserved. Fil:De Leo, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Dratman, E. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Matera, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
We consider a family of polynomial systems which arises in the analysis of the stationary solutions of a standard discretization of certain semi-linear second-order parabolic partial differential equations. We prove that this family is well-conditioned from the numeric point of view, and ill-conditioned from the symbolic point of view. We exhibit a polynomial-time numeric algorithm solving any member of this family, which significantly contrasts the exponential behavior of all known symbolic algorithms solving a generic instance of this family of systems. © 2005 Elsevier Inc. All rights reserved. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0885064X_v21_n4_p502_DeLeo |
url |
http://hdl.handle.net/20.500.12110/paper_0885064X_v21_n4_p502_DeLeo |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Complexity 2005;21(4):502-531 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618737197514752 |
score |
13.070432 |