Improved double-robust estimation in missing data and causal inference models
- Autores
- Rotnitzky, Andrea Gloria; Lei, Quanhong; Sued, Raquel Mariela; Robins, James M.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Recently proposed double-robust estimators for a population mean from incomplete data and for a finite number of counterfactual means can have much higher efficiency than the usual double-robust estimators under misspecification of the outcome model. In this paper, we derive a new class of double-robust estimators for the parameters of regression models with incomplete cross-sectional or longitudinal data, and of marginal structural mean models for cross-sectional data with similar efficiency properties. Unlike the recent proposals, our estimators solve outcome regression estimating equations. In a simulation study, the new estimator shows improvements in variance relative to the standard double-robust estimator that are in agreement with those suggested by asymptotic theory.
Fil: Rotnitzky, Andrea Gloria. Universidad Torcuato Di Tella. Departamento de Economía; Argentina
Fil: Lei, Quanhong. Harvard University; Estados Unidos
Fil: Sued, Raquel Mariela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Robins, James M.. Harvard University; Estados Unidos - Materia
-
Drop-Out
Marginal Structural Model
Missing at Random - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/68404
Ver los metadatos del registro completo
id |
CONICETDig_960b9ebdb1b3dfce9a7e9eea4ed9c72c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/68404 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Improved double-robust estimation in missing data and causal inference modelsRotnitzky, Andrea GloriaLei, QuanhongSued, Raquel MarielaRobins, James M.Drop-OutMarginal Structural ModelMissing at Randomhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Recently proposed double-robust estimators for a population mean from incomplete data and for a finite number of counterfactual means can have much higher efficiency than the usual double-robust estimators under misspecification of the outcome model. In this paper, we derive a new class of double-robust estimators for the parameters of regression models with incomplete cross-sectional or longitudinal data, and of marginal structural mean models for cross-sectional data with similar efficiency properties. Unlike the recent proposals, our estimators solve outcome regression estimating equations. In a simulation study, the new estimator shows improvements in variance relative to the standard double-robust estimator that are in agreement with those suggested by asymptotic theory.Fil: Rotnitzky, Andrea Gloria. Universidad Torcuato Di Tella. Departamento de Economía; ArgentinaFil: Lei, Quanhong. Harvard University; Estados UnidosFil: Sued, Raquel Mariela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Robins, James M.. Harvard University; Estados UnidosOxford University Press2012-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/68404Rotnitzky, Andrea Gloria; Lei, Quanhong; Sued, Raquel Mariela; Robins, James M.; Improved double-robust estimation in missing data and causal inference models; Oxford University Press; Biometrika; 99; 2; 6-2012; 439-4560006-3444CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1093/biomet/ass013info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/biomet/article-abstract/99/2/439/306137info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:41Zoai:ri.conicet.gov.ar:11336/68404instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:41.801CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Improved double-robust estimation in missing data and causal inference models |
title |
Improved double-robust estimation in missing data and causal inference models |
spellingShingle |
Improved double-robust estimation in missing data and causal inference models Rotnitzky, Andrea Gloria Drop-Out Marginal Structural Model Missing at Random |
title_short |
Improved double-robust estimation in missing data and causal inference models |
title_full |
Improved double-robust estimation in missing data and causal inference models |
title_fullStr |
Improved double-robust estimation in missing data and causal inference models |
title_full_unstemmed |
Improved double-robust estimation in missing data and causal inference models |
title_sort |
Improved double-robust estimation in missing data and causal inference models |
dc.creator.none.fl_str_mv |
Rotnitzky, Andrea Gloria Lei, Quanhong Sued, Raquel Mariela Robins, James M. |
author |
Rotnitzky, Andrea Gloria |
author_facet |
Rotnitzky, Andrea Gloria Lei, Quanhong Sued, Raquel Mariela Robins, James M. |
author_role |
author |
author2 |
Lei, Quanhong Sued, Raquel Mariela Robins, James M. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Drop-Out Marginal Structural Model Missing at Random |
topic |
Drop-Out Marginal Structural Model Missing at Random |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Recently proposed double-robust estimators for a population mean from incomplete data and for a finite number of counterfactual means can have much higher efficiency than the usual double-robust estimators under misspecification of the outcome model. In this paper, we derive a new class of double-robust estimators for the parameters of regression models with incomplete cross-sectional or longitudinal data, and of marginal structural mean models for cross-sectional data with similar efficiency properties. Unlike the recent proposals, our estimators solve outcome regression estimating equations. In a simulation study, the new estimator shows improvements in variance relative to the standard double-robust estimator that are in agreement with those suggested by asymptotic theory. Fil: Rotnitzky, Andrea Gloria. Universidad Torcuato Di Tella. Departamento de Economía; Argentina Fil: Lei, Quanhong. Harvard University; Estados Unidos Fil: Sued, Raquel Mariela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Robins, James M.. Harvard University; Estados Unidos |
description |
Recently proposed double-robust estimators for a population mean from incomplete data and for a finite number of counterfactual means can have much higher efficiency than the usual double-robust estimators under misspecification of the outcome model. In this paper, we derive a new class of double-robust estimators for the parameters of regression models with incomplete cross-sectional or longitudinal data, and of marginal structural mean models for cross-sectional data with similar efficiency properties. Unlike the recent proposals, our estimators solve outcome regression estimating equations. In a simulation study, the new estimator shows improvements in variance relative to the standard double-robust estimator that are in agreement with those suggested by asymptotic theory. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/68404 Rotnitzky, Andrea Gloria; Lei, Quanhong; Sued, Raquel Mariela; Robins, James M.; Improved double-robust estimation in missing data and causal inference models; Oxford University Press; Biometrika; 99; 2; 6-2012; 439-456 0006-3444 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/68404 |
identifier_str_mv |
Rotnitzky, Andrea Gloria; Lei, Quanhong; Sued, Raquel Mariela; Robins, James M.; Improved double-robust estimation in missing data and causal inference models; Oxford University Press; Biometrika; 99; 2; 6-2012; 439-456 0006-3444 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1093/biomet/ass013 info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/biomet/article-abstract/99/2/439/306137 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269176611209216 |
score |
13.13397 |