Robust inference in partially linear models with missing responses

Autores
Bianco, Ana Maria; Boente Boente, Graciela Lina; González Manteiga, Wenceslao; Pérez González, Ana
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider robust testing on the regression parameter of a partially linear regression model, where missing responses are allowed. We derive the asymptotic behavior of the proposed test statistic under the null and contiguous alternatives. A numerical study is performed.
Fil: Bianco, Ana Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: González Manteiga, Wenceslao. Universidad de Santiago de Compostela; España
Fil: Pérez González, Ana. Universidad de Vigo; España
Materia
Kernel Weights
Hypothesis Testing
M-Location Functionals
Missing at Random
Partly Linear Models
Robust Estimation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/20968

id CONICETDig_388e4a9d5a08bd89f803a4c1aac650dd
oai_identifier_str oai:ri.conicet.gov.ar:11336/20968
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Robust inference in partially linear models with missing responsesBianco, Ana MariaBoente Boente, Graciela LinaGonzález Manteiga, WenceslaoPérez González, AnaKernel WeightsHypothesis TestingM-Location FunctionalsMissing at RandomPartly Linear ModelsRobust Estimationhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider robust testing on the regression parameter of a partially linear regression model, where missing responses are allowed. We derive the asymptotic behavior of the proposed test statistic under the null and contiguous alternatives. A numerical study is performed.Fil: Bianco, Ana Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: González Manteiga, Wenceslao. Universidad de Santiago de Compostela; EspañaFil: Pérez González, Ana. Universidad de Vigo; EspañaElsevier Science2014-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20968Bianco, Ana Maria; Boente Boente, Graciela Lina; González Manteiga, Wenceslao; Pérez González, Ana; Robust inference in partially linear models with missing responses; Elsevier Science; Statistics & Probability Letters; 97; 11-2014; 88-980167-7152CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.spl.2014.11.004info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167715214003733info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:19Zoai:ri.conicet.gov.ar:11336/20968instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:20.155CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Robust inference in partially linear models with missing responses
title Robust inference in partially linear models with missing responses
spellingShingle Robust inference in partially linear models with missing responses
Bianco, Ana Maria
Kernel Weights
Hypothesis Testing
M-Location Functionals
Missing at Random
Partly Linear Models
Robust Estimation
title_short Robust inference in partially linear models with missing responses
title_full Robust inference in partially linear models with missing responses
title_fullStr Robust inference in partially linear models with missing responses
title_full_unstemmed Robust inference in partially linear models with missing responses
title_sort Robust inference in partially linear models with missing responses
dc.creator.none.fl_str_mv Bianco, Ana Maria
Boente Boente, Graciela Lina
González Manteiga, Wenceslao
Pérez González, Ana
author Bianco, Ana Maria
author_facet Bianco, Ana Maria
Boente Boente, Graciela Lina
González Manteiga, Wenceslao
Pérez González, Ana
author_role author
author2 Boente Boente, Graciela Lina
González Manteiga, Wenceslao
Pérez González, Ana
author2_role author
author
author
dc.subject.none.fl_str_mv Kernel Weights
Hypothesis Testing
M-Location Functionals
Missing at Random
Partly Linear Models
Robust Estimation
topic Kernel Weights
Hypothesis Testing
M-Location Functionals
Missing at Random
Partly Linear Models
Robust Estimation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We consider robust testing on the regression parameter of a partially linear regression model, where missing responses are allowed. We derive the asymptotic behavior of the proposed test statistic under the null and contiguous alternatives. A numerical study is performed.
Fil: Bianco, Ana Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: González Manteiga, Wenceslao. Universidad de Santiago de Compostela; España
Fil: Pérez González, Ana. Universidad de Vigo; España
description We consider robust testing on the regression parameter of a partially linear regression model, where missing responses are allowed. We derive the asymptotic behavior of the proposed test statistic under the null and contiguous alternatives. A numerical study is performed.
publishDate 2014
dc.date.none.fl_str_mv 2014-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/20968
Bianco, Ana Maria; Boente Boente, Graciela Lina; González Manteiga, Wenceslao; Pérez González, Ana; Robust inference in partially linear models with missing responses; Elsevier Science; Statistics & Probability Letters; 97; 11-2014; 88-98
0167-7152
CONICET Digital
CONICET
url http://hdl.handle.net/11336/20968
identifier_str_mv Bianco, Ana Maria; Boente Boente, Graciela Lina; González Manteiga, Wenceslao; Pérez González, Ana; Robust inference in partially linear models with missing responses; Elsevier Science; Statistics & Probability Letters; 97; 11-2014; 88-98
0167-7152
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.spl.2014.11.004
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167715214003733
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269905926225920
score 13.13397