High breakdown point robust estimators with missing data
- Autores
- Statti, María Florencia; Sued, Raquel Mariela; Yohai, Victor Jaime
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we propose a new procedure to estimate the distribution of a variable y when there are missing data. To compensate the presence of missing responses, it is assumed that a covariate vector x is observed and that y and x are related by means of a semi-parametric regression model. Observed residuals are combined with predicted values to estimate the missing response distribution. Once the responses distribution is consistently estimated, we can estimate any parameter defined through a continuous functional T using a plug in procedure. We prove that the proposed estimators have high breakdown point.
Fil: Statti, María Florencia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Sued, Raquel Mariela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Asymptotic Distribution
Breakdown Point
Location And Dispersion Functionals
Missing at Random
Quantiles - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/59978
Ver los metadatos del registro completo
id |
CONICETDig_7b8e7fc2f4c7c9e4f5c1986e223aee6e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/59978 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
High breakdown point robust estimators with missing dataStatti, María FlorenciaSued, Raquel MarielaYohai, Victor JaimeAsymptotic DistributionBreakdown PointLocation And Dispersion FunctionalsMissing at RandomQuantileshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we propose a new procedure to estimate the distribution of a variable y when there are missing data. To compensate the presence of missing responses, it is assumed that a covariate vector x is observed and that y and x are related by means of a semi-parametric regression model. Observed residuals are combined with predicted values to estimate the missing response distribution. Once the responses distribution is consistently estimated, we can estimate any parameter defined through a continuous functional T using a plug in procedure. We prove that the proposed estimators have high breakdown point.Fil: Statti, María Florencia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sued, Raquel Mariela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaTaylor2018-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59978Statti, María Florencia; Sued, Raquel Mariela; Yohai, Victor Jaime; High breakdown point robust estimators with missing data; Taylor; Communications In Statistics-theory And Methods; 47; 21; 11-2018; 5145-51620361-09261532-415XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/03610926.2017.1388396info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/03610926.2017.1388396info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:15Zoai:ri.conicet.gov.ar:11336/59978instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:15.509CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
High breakdown point robust estimators with missing data |
title |
High breakdown point robust estimators with missing data |
spellingShingle |
High breakdown point robust estimators with missing data Statti, María Florencia Asymptotic Distribution Breakdown Point Location And Dispersion Functionals Missing at Random Quantiles |
title_short |
High breakdown point robust estimators with missing data |
title_full |
High breakdown point robust estimators with missing data |
title_fullStr |
High breakdown point robust estimators with missing data |
title_full_unstemmed |
High breakdown point robust estimators with missing data |
title_sort |
High breakdown point robust estimators with missing data |
dc.creator.none.fl_str_mv |
Statti, María Florencia Sued, Raquel Mariela Yohai, Victor Jaime |
author |
Statti, María Florencia |
author_facet |
Statti, María Florencia Sued, Raquel Mariela Yohai, Victor Jaime |
author_role |
author |
author2 |
Sued, Raquel Mariela Yohai, Victor Jaime |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Asymptotic Distribution Breakdown Point Location And Dispersion Functionals Missing at Random Quantiles |
topic |
Asymptotic Distribution Breakdown Point Location And Dispersion Functionals Missing at Random Quantiles |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, we propose a new procedure to estimate the distribution of a variable y when there are missing data. To compensate the presence of missing responses, it is assumed that a covariate vector x is observed and that y and x are related by means of a semi-parametric regression model. Observed residuals are combined with predicted values to estimate the missing response distribution. Once the responses distribution is consistently estimated, we can estimate any parameter defined through a continuous functional T using a plug in procedure. We prove that the proposed estimators have high breakdown point. Fil: Statti, María Florencia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Sued, Raquel Mariela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
In this paper, we propose a new procedure to estimate the distribution of a variable y when there are missing data. To compensate the presence of missing responses, it is assumed that a covariate vector x is observed and that y and x are related by means of a semi-parametric regression model. Observed residuals are combined with predicted values to estimate the missing response distribution. Once the responses distribution is consistently estimated, we can estimate any parameter defined through a continuous functional T using a plug in procedure. We prove that the proposed estimators have high breakdown point. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/59978 Statti, María Florencia; Sued, Raquel Mariela; Yohai, Victor Jaime; High breakdown point robust estimators with missing data; Taylor; Communications In Statistics-theory And Methods; 47; 21; 11-2018; 5145-5162 0361-0926 1532-415X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/59978 |
identifier_str_mv |
Statti, María Florencia; Sued, Raquel Mariela; Yohai, Victor Jaime; High breakdown point robust estimators with missing data; Taylor; Communications In Statistics-theory And Methods; 47; 21; 11-2018; 5145-5162 0361-0926 1532-415X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1080/03610926.2017.1388396 info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/03610926.2017.1388396 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor |
publisher.none.fl_str_mv |
Taylor |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268845761363968 |
score |
13.13397 |