Robust location estimation with missing data
- Autores
- Sued, Raquel Mariela; Yohai, Victor Jaime
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In a missing data setting, we have a sample in which a vector of explanatory variables xi is observed for every subject i, while scalar responses yi are missing by happenstance on some individuals. In this work we propose robust estimators of the distribution of the responses assuming missing at random (MAR) data, under a semiparametric regression model. Our approach allows the consistent estimation of any weakly continuous functional of the response’s distribution. In particular, strongly consistent estimators of any continuous location functional, such as the median, L-functionals and M-functionals, are proposed. A robust fit for the regression model combined with the robust properties of the location functional gives rise to a robust recipe for estimating the location parameter. Robustness is quantified through the breakdown point of the proposed procedure. The asymptotic distribution of the location estimators is also derived. The proofs of the theorems are presented in Supplementary Material available online.
Avec les donnees manquantes, nous avons un ´ echantillon pour lequel les variables explicatives ´ xi sont observees pour chaque sujet ´ i, tandis que les variables reponses ´ yi sont manquantes au hasard pour quelques individus. Dans ce travail, nous proposons des estimateurs robustes pour la fonction de distribution des variables reponses en supposant que les donn ´ ees soient manquantes au hasard (MAR), sous un mod ´ ele ` de regression non param ´ etrique. Notre approche permet l’estimation coh ´ erente de n’importe quelle fonction- ´ nelle faiblement continue de la distribution des variables reponses. Plus particuli ´ erement, nous proposons des ` L- et M-fonctionnelles qui sont des estimateurs fortement coherents de n’importe quelle fonctionnelle con- ´ tinue du parametre de position (par exemple, la m ` ediane). Une m ´ ethode d’ajustement robuste du mod ´ ele de ` regression combin ´ ee aux propri ´ et´ es de robustesse des fonctionnelles de tendance centrale fournissent une ´ methode robuste pour l’estimation du param ´ etre de position. La robustesse de notre proc ` edure est mesur ´ ee´ a l’aide du point de rupture. Nous obtenons aussi la fonction de distribution asymptotique des estimateurs ` du parametre de position. Des suppl ` ements, contenant les d ´ emonstrations des th ´ eor ´ emes, sont disponibles ` en ligne.
Fil: Sued, Raquel Mariela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Missing at Random
M-Location Functional
Asymptotic Distribution
Breakdown Point - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/15926
Ver los metadatos del registro completo
id |
CONICETDig_50c0ab7408c7850b61b4115c1bb8121e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/15926 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Robust location estimation with missing dataSued, Raquel MarielaYohai, Victor JaimeMissing at RandomM-Location FunctionalAsymptotic DistributionBreakdown Pointhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In a missing data setting, we have a sample in which a vector of explanatory variables xi is observed for every subject i, while scalar responses yi are missing by happenstance on some individuals. In this work we propose robust estimators of the distribution of the responses assuming missing at random (MAR) data, under a semiparametric regression model. Our approach allows the consistent estimation of any weakly continuous functional of the response’s distribution. In particular, strongly consistent estimators of any continuous location functional, such as the median, L-functionals and M-functionals, are proposed. A robust fit for the regression model combined with the robust properties of the location functional gives rise to a robust recipe for estimating the location parameter. Robustness is quantified through the breakdown point of the proposed procedure. The asymptotic distribution of the location estimators is also derived. The proofs of the theorems are presented in Supplementary Material available online.Avec les donnees manquantes, nous avons un ´ echantillon pour lequel les variables explicatives ´ xi sont observees pour chaque sujet ´ i, tandis que les variables reponses ´ yi sont manquantes au hasard pour quelques individus. Dans ce travail, nous proposons des estimateurs robustes pour la fonction de distribution des variables reponses en supposant que les donn ´ ees soient manquantes au hasard (MAR), sous un mod ´ ele ` de regression non param ´ etrique. Notre approche permet l’estimation coh ´ erente de n’importe quelle fonction- ´ nelle faiblement continue de la distribution des variables reponses. Plus particuli ´ erement, nous proposons des ` L- et M-fonctionnelles qui sont des estimateurs fortement coherents de n’importe quelle fonctionnelle con- ´ tinue du parametre de position (par exemple, la m ` ediane). Une m ´ ethode d’ajustement robuste du mod ´ ele de ` regression combin ´ ee aux propri ´ et´ es de robustesse des fonctionnelles de tendance centrale fournissent une ´ methode robuste pour l’estimation du param ´ etre de position. La robustesse de notre proc ` edure est mesur ´ ee´ a l’aide du point de rupture. Nous obtenons aussi la fonction de distribution asymptotique des estimateurs ` du parametre de position. Des suppl ` ements, contenant les d ´ emonstrations des th ´ eor ´ emes, sont disponibles ` en ligne.Fil: Sued, Raquel Mariela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaStatistical Society of Canada2013-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15926Sued, Raquel Mariela; Yohai, Victor Jaime; Robust location estimation with missing data; Statistical Society of Canada; Canadian Journal Of Statistics-revue Canadienne de Statistique; 41; 1; 3-2013; 111-1320319-5724enginfo:eu-repo/semantics/altIdentifier/doi/10.1002/cjs.11163info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/cjs.11163/abstractinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:15Zoai:ri.conicet.gov.ar:11336/15926instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:16.024CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Robust location estimation with missing data |
title |
Robust location estimation with missing data |
spellingShingle |
Robust location estimation with missing data Sued, Raquel Mariela Missing at Random M-Location Functional Asymptotic Distribution Breakdown Point |
title_short |
Robust location estimation with missing data |
title_full |
Robust location estimation with missing data |
title_fullStr |
Robust location estimation with missing data |
title_full_unstemmed |
Robust location estimation with missing data |
title_sort |
Robust location estimation with missing data |
dc.creator.none.fl_str_mv |
Sued, Raquel Mariela Yohai, Victor Jaime |
author |
Sued, Raquel Mariela |
author_facet |
Sued, Raquel Mariela Yohai, Victor Jaime |
author_role |
author |
author2 |
Yohai, Victor Jaime |
author2_role |
author |
dc.subject.none.fl_str_mv |
Missing at Random M-Location Functional Asymptotic Distribution Breakdown Point |
topic |
Missing at Random M-Location Functional Asymptotic Distribution Breakdown Point |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In a missing data setting, we have a sample in which a vector of explanatory variables xi is observed for every subject i, while scalar responses yi are missing by happenstance on some individuals. In this work we propose robust estimators of the distribution of the responses assuming missing at random (MAR) data, under a semiparametric regression model. Our approach allows the consistent estimation of any weakly continuous functional of the response’s distribution. In particular, strongly consistent estimators of any continuous location functional, such as the median, L-functionals and M-functionals, are proposed. A robust fit for the regression model combined with the robust properties of the location functional gives rise to a robust recipe for estimating the location parameter. Robustness is quantified through the breakdown point of the proposed procedure. The asymptotic distribution of the location estimators is also derived. The proofs of the theorems are presented in Supplementary Material available online. Avec les donnees manquantes, nous avons un ´ echantillon pour lequel les variables explicatives ´ xi sont observees pour chaque sujet ´ i, tandis que les variables reponses ´ yi sont manquantes au hasard pour quelques individus. Dans ce travail, nous proposons des estimateurs robustes pour la fonction de distribution des variables reponses en supposant que les donn ´ ees soient manquantes au hasard (MAR), sous un mod ´ ele ` de regression non param ´ etrique. Notre approche permet l’estimation coh ´ erente de n’importe quelle fonction- ´ nelle faiblement continue de la distribution des variables reponses. Plus particuli ´ erement, nous proposons des ` L- et M-fonctionnelles qui sont des estimateurs fortement coherents de n’importe quelle fonctionnelle con- ´ tinue du parametre de position (par exemple, la m ` ediane). Une m ´ ethode d’ajustement robuste du mod ´ ele de ` regression combin ´ ee aux propri ´ et´ es de robustesse des fonctionnelles de tendance centrale fournissent une ´ methode robuste pour l’estimation du param ´ etre de position. La robustesse de notre proc ` edure est mesur ´ ee´ a l’aide du point de rupture. Nous obtenons aussi la fonction de distribution asymptotique des estimateurs ` du parametre de position. Des suppl ` ements, contenant les d ´ emonstrations des th ´ eor ´ emes, sont disponibles ` en ligne. Fil: Sued, Raquel Mariela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
In a missing data setting, we have a sample in which a vector of explanatory variables xi is observed for every subject i, while scalar responses yi are missing by happenstance on some individuals. In this work we propose robust estimators of the distribution of the responses assuming missing at random (MAR) data, under a semiparametric regression model. Our approach allows the consistent estimation of any weakly continuous functional of the response’s distribution. In particular, strongly consistent estimators of any continuous location functional, such as the median, L-functionals and M-functionals, are proposed. A robust fit for the regression model combined with the robust properties of the location functional gives rise to a robust recipe for estimating the location parameter. Robustness is quantified through the breakdown point of the proposed procedure. The asymptotic distribution of the location estimators is also derived. The proofs of the theorems are presented in Supplementary Material available online. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/15926 Sued, Raquel Mariela; Yohai, Victor Jaime; Robust location estimation with missing data; Statistical Society of Canada; Canadian Journal Of Statistics-revue Canadienne de Statistique; 41; 1; 3-2013; 111-132 0319-5724 |
url |
http://hdl.handle.net/11336/15926 |
identifier_str_mv |
Sued, Raquel Mariela; Yohai, Victor Jaime; Robust location estimation with missing data; Statistical Society of Canada; Canadian Journal Of Statistics-revue Canadienne de Statistique; 41; 1; 3-2013; 111-132 0319-5724 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/cjs.11163 info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/cjs.11163/abstract |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Statistical Society of Canada |
publisher.none.fl_str_mv |
Statistical Society of Canada |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269511238025216 |
score |
13.13397 |