Plug-in marginal estimation under a general regression model with missing responses and covariates

Autores
Bianco, Ana Maria; Boente Boente, Graciela Lina; González Manteiga, Wenceslao; Pérez-González, Ana
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper, we consider a general regression model where missing data occur in the response and in the covariates. Our aim is to estimate the marginal distribution function and a marginal functional, such as the mean, the median or any α-quantile of the response variable. A missing at random condition is assumed in order to prevent from bias in the estimation of the marginal measures under a non-ignorable missing mechanism. We give two different approaches for the estimation of the responses distribution function and of a given marginal functional, involving inverse probability weighting and the convolution of the distribution function of the observed residuals and that of the observed estimated regression function. Through a Monte Carlo study and two real data sets, we illustrate the behaviour of our proposals.
Fil: Bianco, Ana Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: González Manteiga, Wenceslao. Universidad de Santiago de Compostela; España
Fil: Pérez-González, Ana. Universidad de Vigo; España
Materia
FISHER CONSISTENCY
KERNEL WEIGHTS
L-ESTIMATORS
MARGINAL FUNCTIONALS
MISSING AT RANDOM
SEMIPARAMETRIC MODELS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/125492

id CONICETDig_420b2f57c0e0a2565b107d9083e0ec98
oai_identifier_str oai:ri.conicet.gov.ar:11336/125492
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Plug-in marginal estimation under a general regression model with missing responses and covariatesBianco, Ana MariaBoente Boente, Graciela LinaGonzález Manteiga, WenceslaoPérez-González, AnaFISHER CONSISTENCYKERNEL WEIGHTSL-ESTIMATORSMARGINAL FUNCTIONALSMISSING AT RANDOMSEMIPARAMETRIC MODELShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we consider a general regression model where missing data occur in the response and in the covariates. Our aim is to estimate the marginal distribution function and a marginal functional, such as the mean, the median or any α-quantile of the response variable. A missing at random condition is assumed in order to prevent from bias in the estimation of the marginal measures under a non-ignorable missing mechanism. We give two different approaches for the estimation of the responses distribution function and of a given marginal functional, involving inverse probability weighting and the convolution of the distribution function of the observed residuals and that of the observed estimated regression function. Through a Monte Carlo study and two real data sets, we illustrate the behaviour of our proposals.Fil: Bianco, Ana Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; ArgentinaFil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: González Manteiga, Wenceslao. Universidad de Santiago de Compostela; EspañaFil: Pérez-González, Ana. Universidad de Vigo; EspañaSpringer2018-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/125492Bianco, Ana Maria; Boente Boente, Graciela Lina; González Manteiga, Wenceslao; Pérez-González, Ana; Plug-in marginal estimation under a general regression model with missing responses and covariates; Springer; Test; 28; 1; 6-2018; 106-1461133-0686CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11749-018-0591-5info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:20:50Zoai:ri.conicet.gov.ar:11336/125492instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:20:50.533CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Plug-in marginal estimation under a general regression model with missing responses and covariates
title Plug-in marginal estimation under a general regression model with missing responses and covariates
spellingShingle Plug-in marginal estimation under a general regression model with missing responses and covariates
Bianco, Ana Maria
FISHER CONSISTENCY
KERNEL WEIGHTS
L-ESTIMATORS
MARGINAL FUNCTIONALS
MISSING AT RANDOM
SEMIPARAMETRIC MODELS
title_short Plug-in marginal estimation under a general regression model with missing responses and covariates
title_full Plug-in marginal estimation under a general regression model with missing responses and covariates
title_fullStr Plug-in marginal estimation under a general regression model with missing responses and covariates
title_full_unstemmed Plug-in marginal estimation under a general regression model with missing responses and covariates
title_sort Plug-in marginal estimation under a general regression model with missing responses and covariates
dc.creator.none.fl_str_mv Bianco, Ana Maria
Boente Boente, Graciela Lina
González Manteiga, Wenceslao
Pérez-González, Ana
author Bianco, Ana Maria
author_facet Bianco, Ana Maria
Boente Boente, Graciela Lina
González Manteiga, Wenceslao
Pérez-González, Ana
author_role author
author2 Boente Boente, Graciela Lina
González Manteiga, Wenceslao
Pérez-González, Ana
author2_role author
author
author
dc.subject.none.fl_str_mv FISHER CONSISTENCY
KERNEL WEIGHTS
L-ESTIMATORS
MARGINAL FUNCTIONALS
MISSING AT RANDOM
SEMIPARAMETRIC MODELS
topic FISHER CONSISTENCY
KERNEL WEIGHTS
L-ESTIMATORS
MARGINAL FUNCTIONALS
MISSING AT RANDOM
SEMIPARAMETRIC MODELS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper, we consider a general regression model where missing data occur in the response and in the covariates. Our aim is to estimate the marginal distribution function and a marginal functional, such as the mean, the median or any α-quantile of the response variable. A missing at random condition is assumed in order to prevent from bias in the estimation of the marginal measures under a non-ignorable missing mechanism. We give two different approaches for the estimation of the responses distribution function and of a given marginal functional, involving inverse probability weighting and the convolution of the distribution function of the observed residuals and that of the observed estimated regression function. Through a Monte Carlo study and two real data sets, we illustrate the behaviour of our proposals.
Fil: Bianco, Ana Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: González Manteiga, Wenceslao. Universidad de Santiago de Compostela; España
Fil: Pérez-González, Ana. Universidad de Vigo; España
description In this paper, we consider a general regression model where missing data occur in the response and in the covariates. Our aim is to estimate the marginal distribution function and a marginal functional, such as the mean, the median or any α-quantile of the response variable. A missing at random condition is assumed in order to prevent from bias in the estimation of the marginal measures under a non-ignorable missing mechanism. We give two different approaches for the estimation of the responses distribution function and of a given marginal functional, involving inverse probability weighting and the convolution of the distribution function of the observed residuals and that of the observed estimated regression function. Through a Monte Carlo study and two real data sets, we illustrate the behaviour of our proposals.
publishDate 2018
dc.date.none.fl_str_mv 2018-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/125492
Bianco, Ana Maria; Boente Boente, Graciela Lina; González Manteiga, Wenceslao; Pérez-González, Ana; Plug-in marginal estimation under a general regression model with missing responses and covariates; Springer; Test; 28; 1; 6-2018; 106-146
1133-0686
CONICET Digital
CONICET
url http://hdl.handle.net/11336/125492
identifier_str_mv Bianco, Ana Maria; Boente Boente, Graciela Lina; González Manteiga, Wenceslao; Pérez-González, Ana; Plug-in marginal estimation under a general regression model with missing responses and covariates; Springer; Test; 28; 1; 6-2018; 106-146
1133-0686
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s11749-018-0591-5
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082589673127936
score 13.22299