Plug-in marginal estimation under a general regression model with missing responses and covariates
- Autores
- Bianco, Ana Maria; Boente Boente, Graciela Lina; González Manteiga, Wenceslao; Pérez-González, Ana
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we consider a general regression model where missing data occur in the response and in the covariates. Our aim is to estimate the marginal distribution function and a marginal functional, such as the mean, the median or any α-quantile of the response variable. A missing at random condition is assumed in order to prevent from bias in the estimation of the marginal measures under a non-ignorable missing mechanism. We give two different approaches for the estimation of the responses distribution function and of a given marginal functional, involving inverse probability weighting and the convolution of the distribution function of the observed residuals and that of the observed estimated regression function. Through a Monte Carlo study and two real data sets, we illustrate the behaviour of our proposals.
Fil: Bianco, Ana Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: González Manteiga, Wenceslao. Universidad de Santiago de Compostela; España
Fil: Pérez-González, Ana. Universidad de Vigo; España - Materia
-
FISHER CONSISTENCY
KERNEL WEIGHTS
L-ESTIMATORS
MARGINAL FUNCTIONALS
MISSING AT RANDOM
SEMIPARAMETRIC MODELS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/125492
Ver los metadatos del registro completo
id |
CONICETDig_420b2f57c0e0a2565b107d9083e0ec98 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/125492 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Plug-in marginal estimation under a general regression model with missing responses and covariatesBianco, Ana MariaBoente Boente, Graciela LinaGonzález Manteiga, WenceslaoPérez-González, AnaFISHER CONSISTENCYKERNEL WEIGHTSL-ESTIMATORSMARGINAL FUNCTIONALSMISSING AT RANDOMSEMIPARAMETRIC MODELShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we consider a general regression model where missing data occur in the response and in the covariates. Our aim is to estimate the marginal distribution function and a marginal functional, such as the mean, the median or any α-quantile of the response variable. A missing at random condition is assumed in order to prevent from bias in the estimation of the marginal measures under a non-ignorable missing mechanism. We give two different approaches for the estimation of the responses distribution function and of a given marginal functional, involving inverse probability weighting and the convolution of the distribution function of the observed residuals and that of the observed estimated regression function. Through a Monte Carlo study and two real data sets, we illustrate the behaviour of our proposals.Fil: Bianco, Ana Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; ArgentinaFil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: González Manteiga, Wenceslao. Universidad de Santiago de Compostela; EspañaFil: Pérez-González, Ana. Universidad de Vigo; EspañaSpringer2018-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/125492Bianco, Ana Maria; Boente Boente, Graciela Lina; González Manteiga, Wenceslao; Pérez-González, Ana; Plug-in marginal estimation under a general regression model with missing responses and covariates; Springer; Test; 28; 1; 6-2018; 106-1461133-0686CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11749-018-0591-5info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:20:50Zoai:ri.conicet.gov.ar:11336/125492instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:20:50.533CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Plug-in marginal estimation under a general regression model with missing responses and covariates |
title |
Plug-in marginal estimation under a general regression model with missing responses and covariates |
spellingShingle |
Plug-in marginal estimation under a general regression model with missing responses and covariates Bianco, Ana Maria FISHER CONSISTENCY KERNEL WEIGHTS L-ESTIMATORS MARGINAL FUNCTIONALS MISSING AT RANDOM SEMIPARAMETRIC MODELS |
title_short |
Plug-in marginal estimation under a general regression model with missing responses and covariates |
title_full |
Plug-in marginal estimation under a general regression model with missing responses and covariates |
title_fullStr |
Plug-in marginal estimation under a general regression model with missing responses and covariates |
title_full_unstemmed |
Plug-in marginal estimation under a general regression model with missing responses and covariates |
title_sort |
Plug-in marginal estimation under a general regression model with missing responses and covariates |
dc.creator.none.fl_str_mv |
Bianco, Ana Maria Boente Boente, Graciela Lina González Manteiga, Wenceslao Pérez-González, Ana |
author |
Bianco, Ana Maria |
author_facet |
Bianco, Ana Maria Boente Boente, Graciela Lina González Manteiga, Wenceslao Pérez-González, Ana |
author_role |
author |
author2 |
Boente Boente, Graciela Lina González Manteiga, Wenceslao Pérez-González, Ana |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
FISHER CONSISTENCY KERNEL WEIGHTS L-ESTIMATORS MARGINAL FUNCTIONALS MISSING AT RANDOM SEMIPARAMETRIC MODELS |
topic |
FISHER CONSISTENCY KERNEL WEIGHTS L-ESTIMATORS MARGINAL FUNCTIONALS MISSING AT RANDOM SEMIPARAMETRIC MODELS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, we consider a general regression model where missing data occur in the response and in the covariates. Our aim is to estimate the marginal distribution function and a marginal functional, such as the mean, the median or any α-quantile of the response variable. A missing at random condition is assumed in order to prevent from bias in the estimation of the marginal measures under a non-ignorable missing mechanism. We give two different approaches for the estimation of the responses distribution function and of a given marginal functional, involving inverse probability weighting and the convolution of the distribution function of the observed residuals and that of the observed estimated regression function. Through a Monte Carlo study and two real data sets, we illustrate the behaviour of our proposals. Fil: Bianco, Ana Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: González Manteiga, Wenceslao. Universidad de Santiago de Compostela; España Fil: Pérez-González, Ana. Universidad de Vigo; España |
description |
In this paper, we consider a general regression model where missing data occur in the response and in the covariates. Our aim is to estimate the marginal distribution function and a marginal functional, such as the mean, the median or any α-quantile of the response variable. A missing at random condition is assumed in order to prevent from bias in the estimation of the marginal measures under a non-ignorable missing mechanism. We give two different approaches for the estimation of the responses distribution function and of a given marginal functional, involving inverse probability weighting and the convolution of the distribution function of the observed residuals and that of the observed estimated regression function. Through a Monte Carlo study and two real data sets, we illustrate the behaviour of our proposals. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/125492 Bianco, Ana Maria; Boente Boente, Graciela Lina; González Manteiga, Wenceslao; Pérez-González, Ana; Plug-in marginal estimation under a general regression model with missing responses and covariates; Springer; Test; 28; 1; 6-2018; 106-146 1133-0686 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/125492 |
identifier_str_mv |
Bianco, Ana Maria; Boente Boente, Graciela Lina; González Manteiga, Wenceslao; Pérez-González, Ana; Plug-in marginal estimation under a general regression model with missing responses and covariates; Springer; Test; 28; 1; 6-2018; 106-146 1133-0686 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11749-018-0591-5 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082589673127936 |
score |
13.22299 |