On Bootstrap Inference for Quantile Regression Panel Data: A Monte Carlo Study
- Autores
- Galvao, Antonio; Montes Rojas, Gabriel Victorio
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper evaluates bootstrap inference methods for quantile regression panel data models. We propose to construct confidence intervals for the parameters of interest using percentile bootstrap with pairwise resampling. We study three different bootstrapping procedures. First, the bootstrap samples are constructed by resampling only from cross-sectional units with replacement. Second, the temporal resampling is performed from the time series. Finally, a more general resampling scheme, which considers sampling from both the cross-sectional and temporal dimensions, is introduced. The bootstrap algorithms are computationally attractive and easy to use in practice. We evaluate the performance of the bootstrap confidence interval by means of Monte Carlo simulations. The results show that the bootstrap methods have good finite sample performance for both location and location-scale models.
Fil: Galvao, Antonio. University of Iowa; Estados Unidos
Fil: Montes Rojas, Gabriel Victorio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; Argentina. City University of London; Reino Unido - Materia
-
QUANTILE REGRESSION
PANEL DATA
FIXED EFFECTS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/69996
Ver los metadatos del registro completo
id |
CONICETDig_9601e076ca18b88026e3ee96aa07c196 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/69996 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On Bootstrap Inference for Quantile Regression Panel Data: A Monte Carlo StudyGalvao, AntonioMontes Rojas, Gabriel VictorioQUANTILE REGRESSIONPANEL DATAFIXED EFFECTShttps://purl.org/becyt/ford/5.2https://purl.org/becyt/ford/5This paper evaluates bootstrap inference methods for quantile regression panel data models. We propose to construct confidence intervals for the parameters of interest using percentile bootstrap with pairwise resampling. We study three different bootstrapping procedures. First, the bootstrap samples are constructed by resampling only from cross-sectional units with replacement. Second, the temporal resampling is performed from the time series. Finally, a more general resampling scheme, which considers sampling from both the cross-sectional and temporal dimensions, is introduced. The bootstrap algorithms are computationally attractive and easy to use in practice. We evaluate the performance of the bootstrap confidence interval by means of Monte Carlo simulations. The results show that the bootstrap methods have good finite sample performance for both location and location-scale models.Fil: Galvao, Antonio. University of Iowa; Estados UnidosFil: Montes Rojas, Gabriel Victorio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; Argentina. City University of London; Reino UnidoMDPI2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/69996Galvao, Antonio; Montes Rojas, Gabriel Victorio; On Bootstrap Inference for Quantile Regression Panel Data: A Monte Carlo Study; MDPI; Econometrics; 3; 3; 10-2015; 654-6662225-1146CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.mdpi.com/2225-1146/3/3/654info:eu-repo/semantics/altIdentifier/doi/10.3390/econometrics3030654info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:15Zoai:ri.conicet.gov.ar:11336/69996instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:15.613CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On Bootstrap Inference for Quantile Regression Panel Data: A Monte Carlo Study |
title |
On Bootstrap Inference for Quantile Regression Panel Data: A Monte Carlo Study |
spellingShingle |
On Bootstrap Inference for Quantile Regression Panel Data: A Monte Carlo Study Galvao, Antonio QUANTILE REGRESSION PANEL DATA FIXED EFFECTS |
title_short |
On Bootstrap Inference for Quantile Regression Panel Data: A Monte Carlo Study |
title_full |
On Bootstrap Inference for Quantile Regression Panel Data: A Monte Carlo Study |
title_fullStr |
On Bootstrap Inference for Quantile Regression Panel Data: A Monte Carlo Study |
title_full_unstemmed |
On Bootstrap Inference for Quantile Regression Panel Data: A Monte Carlo Study |
title_sort |
On Bootstrap Inference for Quantile Regression Panel Data: A Monte Carlo Study |
dc.creator.none.fl_str_mv |
Galvao, Antonio Montes Rojas, Gabriel Victorio |
author |
Galvao, Antonio |
author_facet |
Galvao, Antonio Montes Rojas, Gabriel Victorio |
author_role |
author |
author2 |
Montes Rojas, Gabriel Victorio |
author2_role |
author |
dc.subject.none.fl_str_mv |
QUANTILE REGRESSION PANEL DATA FIXED EFFECTS |
topic |
QUANTILE REGRESSION PANEL DATA FIXED EFFECTS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/5.2 https://purl.org/becyt/ford/5 |
dc.description.none.fl_txt_mv |
This paper evaluates bootstrap inference methods for quantile regression panel data models. We propose to construct confidence intervals for the parameters of interest using percentile bootstrap with pairwise resampling. We study three different bootstrapping procedures. First, the bootstrap samples are constructed by resampling only from cross-sectional units with replacement. Second, the temporal resampling is performed from the time series. Finally, a more general resampling scheme, which considers sampling from both the cross-sectional and temporal dimensions, is introduced. The bootstrap algorithms are computationally attractive and easy to use in practice. We evaluate the performance of the bootstrap confidence interval by means of Monte Carlo simulations. The results show that the bootstrap methods have good finite sample performance for both location and location-scale models. Fil: Galvao, Antonio. University of Iowa; Estados Unidos Fil: Montes Rojas, Gabriel Victorio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; Argentina. City University of London; Reino Unido |
description |
This paper evaluates bootstrap inference methods for quantile regression panel data models. We propose to construct confidence intervals for the parameters of interest using percentile bootstrap with pairwise resampling. We study three different bootstrapping procedures. First, the bootstrap samples are constructed by resampling only from cross-sectional units with replacement. Second, the temporal resampling is performed from the time series. Finally, a more general resampling scheme, which considers sampling from both the cross-sectional and temporal dimensions, is introduced. The bootstrap algorithms are computationally attractive and easy to use in practice. We evaluate the performance of the bootstrap confidence interval by means of Monte Carlo simulations. The results show that the bootstrap methods have good finite sample performance for both location and location-scale models. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/69996 Galvao, Antonio; Montes Rojas, Gabriel Victorio; On Bootstrap Inference for Quantile Regression Panel Data: A Monte Carlo Study; MDPI; Econometrics; 3; 3; 10-2015; 654-666 2225-1146 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/69996 |
identifier_str_mv |
Galvao, Antonio; Montes Rojas, Gabriel Victorio; On Bootstrap Inference for Quantile Regression Panel Data: A Monte Carlo Study; MDPI; Econometrics; 3; 3; 10-2015; 654-666 2225-1146 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.mdpi.com/2225-1146/3/3/654 info:eu-repo/semantics/altIdentifier/doi/10.3390/econometrics3030654 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269901499138048 |
score |
13.13397 |