Conditional vs Unconditional Quantile Regression Models: A Guide to Practitioners
- Autores
- Alejo, Javier; Favata, Federico; Montes Rojas, Gabriel Victorio; Trombetta, Martin
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper analyzes two econometric tools that are used to evaluate distributional effects, condi-tional quantile regression (CQR) and unconditional quantile regression (UQR). Our main objectiveis to shed light on the similarities and differences between these methodologies. An interestingtheoretical derivation to connect CQR and UQR is that, for the effect of a continuous covariate,the UQR is a weighted average of the CQR. This imposes clear bounds on the values that UQRcoefficients can take and provides a way to detect misspecification. The key here is a match be-tween CQR whose predicted values are the closest to the unconditional quantile. For a binarycovariate, however, this relationship is not valid. We illustrate these models using age returns andgender gap in Argentina for 2019 and 2020.
Fil: Alejo, Javier. Universidad de la República; Uruguay
Fil: Favata, Federico. Universidad Nacional de San Martín; Argentina
Fil: Montes Rojas, Gabriel Victorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Interdisciplinario de Economía Política de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Instituto Interdisciplinario de Economía Política de Buenos Aires; Argentina
Fil: Trombetta, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento; Argentina - Materia
-
QUANTILE REGRESSION
UNCONDITIONAL QUANTILE REGRESSION
INFLUENCE FUNCTIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/157743
Ver los metadatos del registro completo
id |
CONICETDig_867b732f4a03ef91d88f86650bc886d6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/157743 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Conditional vs Unconditional Quantile Regression Models: A Guide to PractitionersAlejo, JavierFavata, FedericoMontes Rojas, Gabriel VictorioTrombetta, MartinQUANTILE REGRESSIONUNCONDITIONAL QUANTILE REGRESSIONINFLUENCE FUNCTIONShttps://purl.org/becyt/ford/5.2https://purl.org/becyt/ford/5This paper analyzes two econometric tools that are used to evaluate distributional effects, condi-tional quantile regression (CQR) and unconditional quantile regression (UQR). Our main objectiveis to shed light on the similarities and differences between these methodologies. An interestingtheoretical derivation to connect CQR and UQR is that, for the effect of a continuous covariate,the UQR is a weighted average of the CQR. This imposes clear bounds on the values that UQRcoefficients can take and provides a way to detect misspecification. The key here is a match be-tween CQR whose predicted values are the closest to the unconditional quantile. For a binarycovariate, however, this relationship is not valid. We illustrate these models using age returns andgender gap in Argentina for 2019 and 2020.Fil: Alejo, Javier. Universidad de la República; UruguayFil: Favata, Federico. Universidad Nacional de San Martín; ArgentinaFil: Montes Rojas, Gabriel Victorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Interdisciplinario de Economía Política de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Instituto Interdisciplinario de Economía Política de Buenos Aires; ArgentinaFil: Trombetta, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento; ArgentinaPontificia Universidad Católica of Peru. Departamento de Economía2021-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/157743Alejo, Javier; Favata, Federico; Montes Rojas, Gabriel Victorio; Trombetta, Martin; Conditional vs Unconditional Quantile Regression Models: A Guide to Practitioners; Pontificia Universidad Católica of Peru. Departamento de Economía; Economía; 44; 88; 10-2021; 1-182304-4306CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://revistas.pucp.edu.pe/index.php/economia/article/view/24201info:eu-repo/semantics/altIdentifier/doi/10.18800/economia.202102.004info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:45Zoai:ri.conicet.gov.ar:11336/157743instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:45.696CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Conditional vs Unconditional Quantile Regression Models: A Guide to Practitioners |
title |
Conditional vs Unconditional Quantile Regression Models: A Guide to Practitioners |
spellingShingle |
Conditional vs Unconditional Quantile Regression Models: A Guide to Practitioners Alejo, Javier QUANTILE REGRESSION UNCONDITIONAL QUANTILE REGRESSION INFLUENCE FUNCTIONS |
title_short |
Conditional vs Unconditional Quantile Regression Models: A Guide to Practitioners |
title_full |
Conditional vs Unconditional Quantile Regression Models: A Guide to Practitioners |
title_fullStr |
Conditional vs Unconditional Quantile Regression Models: A Guide to Practitioners |
title_full_unstemmed |
Conditional vs Unconditional Quantile Regression Models: A Guide to Practitioners |
title_sort |
Conditional vs Unconditional Quantile Regression Models: A Guide to Practitioners |
dc.creator.none.fl_str_mv |
Alejo, Javier Favata, Federico Montes Rojas, Gabriel Victorio Trombetta, Martin |
author |
Alejo, Javier |
author_facet |
Alejo, Javier Favata, Federico Montes Rojas, Gabriel Victorio Trombetta, Martin |
author_role |
author |
author2 |
Favata, Federico Montes Rojas, Gabriel Victorio Trombetta, Martin |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
QUANTILE REGRESSION UNCONDITIONAL QUANTILE REGRESSION INFLUENCE FUNCTIONS |
topic |
QUANTILE REGRESSION UNCONDITIONAL QUANTILE REGRESSION INFLUENCE FUNCTIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/5.2 https://purl.org/becyt/ford/5 |
dc.description.none.fl_txt_mv |
This paper analyzes two econometric tools that are used to evaluate distributional effects, condi-tional quantile regression (CQR) and unconditional quantile regression (UQR). Our main objectiveis to shed light on the similarities and differences between these methodologies. An interestingtheoretical derivation to connect CQR and UQR is that, for the effect of a continuous covariate,the UQR is a weighted average of the CQR. This imposes clear bounds on the values that UQRcoefficients can take and provides a way to detect misspecification. The key here is a match be-tween CQR whose predicted values are the closest to the unconditional quantile. For a binarycovariate, however, this relationship is not valid. We illustrate these models using age returns andgender gap in Argentina for 2019 and 2020. Fil: Alejo, Javier. Universidad de la República; Uruguay Fil: Favata, Federico. Universidad Nacional de San Martín; Argentina Fil: Montes Rojas, Gabriel Victorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Interdisciplinario de Economía Política de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Económicas. Instituto Interdisciplinario de Economía Política de Buenos Aires; Argentina Fil: Trombetta, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento; Argentina |
description |
This paper analyzes two econometric tools that are used to evaluate distributional effects, condi-tional quantile regression (CQR) and unconditional quantile regression (UQR). Our main objectiveis to shed light on the similarities and differences between these methodologies. An interestingtheoretical derivation to connect CQR and UQR is that, for the effect of a continuous covariate,the UQR is a weighted average of the CQR. This imposes clear bounds on the values that UQRcoefficients can take and provides a way to detect misspecification. The key here is a match be-tween CQR whose predicted values are the closest to the unconditional quantile. For a binarycovariate, however, this relationship is not valid. We illustrate these models using age returns andgender gap in Argentina for 2019 and 2020. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/157743 Alejo, Javier; Favata, Federico; Montes Rojas, Gabriel Victorio; Trombetta, Martin; Conditional vs Unconditional Quantile Regression Models: A Guide to Practitioners; Pontificia Universidad Católica of Peru. Departamento de Economía; Economía; 44; 88; 10-2021; 1-18 2304-4306 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/157743 |
identifier_str_mv |
Alejo, Javier; Favata, Federico; Montes Rojas, Gabriel Victorio; Trombetta, Martin; Conditional vs Unconditional Quantile Regression Models: A Guide to Practitioners; Pontificia Universidad Católica of Peru. Departamento de Economía; Economía; 44; 88; 10-2021; 1-18 2304-4306 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://revistas.pucp.edu.pe/index.php/economia/article/view/24201 info:eu-repo/semantics/altIdentifier/doi/10.18800/economia.202102.004 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pontificia Universidad Católica of Peru. Departamento de Economía |
publisher.none.fl_str_mv |
Pontificia Universidad Católica of Peru. Departamento de Economía |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268879650291712 |
score |
13.13397 |