Quantile regression with an endogenous misclassified binary regressor

Autores
Lamarche, Carlos
Año de publicación
2023
Idioma
inglés
Tipo de recurso
documento de trabajo
Estado
versión enviada
Descripción
Recent work on the conditional mean model offers the possibility of addressing misreporting of participation in social programs, which is common and has increased in all major surveys. However, researchers who employ quantile regression continue to encounter challenges in terms of estimation and statistical inference. In this work, we propose a simple two-step estimator for a quantile regression model with endogenous misreporting. The identification of the model uses a parametric first stage and information related to participation and misreporting. We show that the estimator is consistent and asymptotically normal. We also establish that a bootstrap procedure is asymptotically valid for approximating the distribution of the estimator. Simulation studies show the small sample behavior of the estimator in comparison with other methods, including a new three-step estimator. Finally, we illustrate the novel approach using U.S. survey data to estimate the intergenerational effect of mother's participation on welfare on daughter's adult income.
Centro de Estudios Distributivos, Laborales y Sociales
Materia
Ciencias Económicas
Quantile regression
Misclassification
Endogenous Treatments
Survey data
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/157397

id SEDICI_299e5b6b9fe0a4d2fd3de13d6a6db10d
oai_identifier_str oai:sedici.unlp.edu.ar:10915/157397
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Quantile regression with an endogenous misclassified binary regressorLamarche, CarlosCiencias EconómicasQuantile regressionMisclassificationEndogenous TreatmentsSurvey dataRecent work on the conditional mean model offers the possibility of addressing misreporting of participation in social programs, which is common and has increased in all major surveys. However, researchers who employ quantile regression continue to encounter challenges in terms of estimation and statistical inference. In this work, we propose a simple two-step estimator for a quantile regression model with endogenous misreporting. The identification of the model uses a parametric first stage and information related to participation and misreporting. We show that the estimator is consistent and asymptotically normal. We also establish that a bootstrap procedure is asymptotically valid for approximating the distribution of the estimator. Simulation studies show the small sample behavior of the estimator in comparison with other methods, including a new three-step estimator. Finally, we illustrate the novel approach using U.S. survey data to estimate the intergenerational effect of mother's participation on welfare on daughter's adult income.Centro de Estudios Distributivos, Laborales y Sociales2023-09info:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/submittedVersionDocumento de trabajohttp://purl.org/coar/resource_type/c_8042info:ar-repo/semantics/documentoDeTrabajoapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/157397enginfo:eu-repo/semantics/altIdentifier/url/https://www.cedlas.econo.unlp.edu.ar/wp/wp-content/uploads/doc_cedlas318.pdf?dl=0info:eu-repo/semantics/altIdentifier/issn/1853-0168info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:13:00Zoai:sedici.unlp.edu.ar:10915/157397Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:13:00.52SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Quantile regression with an endogenous misclassified binary regressor
title Quantile regression with an endogenous misclassified binary regressor
spellingShingle Quantile regression with an endogenous misclassified binary regressor
Lamarche, Carlos
Ciencias Económicas
Quantile regression
Misclassification
Endogenous Treatments
Survey data
title_short Quantile regression with an endogenous misclassified binary regressor
title_full Quantile regression with an endogenous misclassified binary regressor
title_fullStr Quantile regression with an endogenous misclassified binary regressor
title_full_unstemmed Quantile regression with an endogenous misclassified binary regressor
title_sort Quantile regression with an endogenous misclassified binary regressor
dc.creator.none.fl_str_mv Lamarche, Carlos
author Lamarche, Carlos
author_facet Lamarche, Carlos
author_role author
dc.subject.none.fl_str_mv Ciencias Económicas
Quantile regression
Misclassification
Endogenous Treatments
Survey data
topic Ciencias Económicas
Quantile regression
Misclassification
Endogenous Treatments
Survey data
dc.description.none.fl_txt_mv Recent work on the conditional mean model offers the possibility of addressing misreporting of participation in social programs, which is common and has increased in all major surveys. However, researchers who employ quantile regression continue to encounter challenges in terms of estimation and statistical inference. In this work, we propose a simple two-step estimator for a quantile regression model with endogenous misreporting. The identification of the model uses a parametric first stage and information related to participation and misreporting. We show that the estimator is consistent and asymptotically normal. We also establish that a bootstrap procedure is asymptotically valid for approximating the distribution of the estimator. Simulation studies show the small sample behavior of the estimator in comparison with other methods, including a new three-step estimator. Finally, we illustrate the novel approach using U.S. survey data to estimate the intergenerational effect of mother's participation on welfare on daughter's adult income.
Centro de Estudios Distributivos, Laborales y Sociales
description Recent work on the conditional mean model offers the possibility of addressing misreporting of participation in social programs, which is common and has increased in all major surveys. However, researchers who employ quantile regression continue to encounter challenges in terms of estimation and statistical inference. In this work, we propose a simple two-step estimator for a quantile regression model with endogenous misreporting. The identification of the model uses a parametric first stage and information related to participation and misreporting. We show that the estimator is consistent and asymptotically normal. We also establish that a bootstrap procedure is asymptotically valid for approximating the distribution of the estimator. Simulation studies show the small sample behavior of the estimator in comparison with other methods, including a new three-step estimator. Finally, we illustrate the novel approach using U.S. survey data to estimate the intergenerational effect of mother's participation on welfare on daughter's adult income.
publishDate 2023
dc.date.none.fl_str_mv 2023-09
dc.type.none.fl_str_mv info:eu-repo/semantics/workingPaper
info:eu-repo/semantics/submittedVersion
Documento de trabajo
http://purl.org/coar/resource_type/c_8042
info:ar-repo/semantics/documentoDeTrabajo
format workingPaper
status_str submittedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/157397
url http://sedici.unlp.edu.ar/handle/10915/157397
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.cedlas.econo.unlp.edu.ar/wp/wp-content/uploads/doc_cedlas318.pdf?dl=0
info:eu-repo/semantics/altIdentifier/issn/1853-0168
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260633802768384
score 13.13397