Quantile regression with an endogenous misclassified binary regressor
- Autores
- Lamarche, Carlos
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- documento de trabajo
- Estado
- versión enviada
- Descripción
- Recent work on the conditional mean model offers the possibility of addressing misreporting of participation in social programs, which is common and has increased in all major surveys. However, researchers who employ quantile regression continue to encounter challenges in terms of estimation and statistical inference. In this work, we propose a simple two-step estimator for a quantile regression model with endogenous misreporting. The identification of the model uses a parametric first stage and information related to participation and misreporting. We show that the estimator is consistent and asymptotically normal. We also establish that a bootstrap procedure is asymptotically valid for approximating the distribution of the estimator. Simulation studies show the small sample behavior of the estimator in comparison with other methods, including a new three-step estimator. Finally, we illustrate the novel approach using U.S. survey data to estimate the intergenerational effect of mother's participation on welfare on daughter's adult income.
Centro de Estudios Distributivos, Laborales y Sociales - Materia
-
Ciencias Económicas
Quantile regression
Misclassification
Endogenous Treatments
Survey data - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/157397
Ver los metadatos del registro completo
id |
SEDICI_299e5b6b9fe0a4d2fd3de13d6a6db10d |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/157397 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Quantile regression with an endogenous misclassified binary regressorLamarche, CarlosCiencias EconómicasQuantile regressionMisclassificationEndogenous TreatmentsSurvey dataRecent work on the conditional mean model offers the possibility of addressing misreporting of participation in social programs, which is common and has increased in all major surveys. However, researchers who employ quantile regression continue to encounter challenges in terms of estimation and statistical inference. In this work, we propose a simple two-step estimator for a quantile regression model with endogenous misreporting. The identification of the model uses a parametric first stage and information related to participation and misreporting. We show that the estimator is consistent and asymptotically normal. We also establish that a bootstrap procedure is asymptotically valid for approximating the distribution of the estimator. Simulation studies show the small sample behavior of the estimator in comparison with other methods, including a new three-step estimator. Finally, we illustrate the novel approach using U.S. survey data to estimate the intergenerational effect of mother's participation on welfare on daughter's adult income.Centro de Estudios Distributivos, Laborales y Sociales2023-09info:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/submittedVersionDocumento de trabajohttp://purl.org/coar/resource_type/c_8042info:ar-repo/semantics/documentoDeTrabajoapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/157397enginfo:eu-repo/semantics/altIdentifier/url/https://www.cedlas.econo.unlp.edu.ar/wp/wp-content/uploads/doc_cedlas318.pdf?dl=0info:eu-repo/semantics/altIdentifier/issn/1853-0168info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:13:00Zoai:sedici.unlp.edu.ar:10915/157397Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:13:00.52SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Quantile regression with an endogenous misclassified binary regressor |
title |
Quantile regression with an endogenous misclassified binary regressor |
spellingShingle |
Quantile regression with an endogenous misclassified binary regressor Lamarche, Carlos Ciencias Económicas Quantile regression Misclassification Endogenous Treatments Survey data |
title_short |
Quantile regression with an endogenous misclassified binary regressor |
title_full |
Quantile regression with an endogenous misclassified binary regressor |
title_fullStr |
Quantile regression with an endogenous misclassified binary regressor |
title_full_unstemmed |
Quantile regression with an endogenous misclassified binary regressor |
title_sort |
Quantile regression with an endogenous misclassified binary regressor |
dc.creator.none.fl_str_mv |
Lamarche, Carlos |
author |
Lamarche, Carlos |
author_facet |
Lamarche, Carlos |
author_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Económicas Quantile regression Misclassification Endogenous Treatments Survey data |
topic |
Ciencias Económicas Quantile regression Misclassification Endogenous Treatments Survey data |
dc.description.none.fl_txt_mv |
Recent work on the conditional mean model offers the possibility of addressing misreporting of participation in social programs, which is common and has increased in all major surveys. However, researchers who employ quantile regression continue to encounter challenges in terms of estimation and statistical inference. In this work, we propose a simple two-step estimator for a quantile regression model with endogenous misreporting. The identification of the model uses a parametric first stage and information related to participation and misreporting. We show that the estimator is consistent and asymptotically normal. We also establish that a bootstrap procedure is asymptotically valid for approximating the distribution of the estimator. Simulation studies show the small sample behavior of the estimator in comparison with other methods, including a new three-step estimator. Finally, we illustrate the novel approach using U.S. survey data to estimate the intergenerational effect of mother's participation on welfare on daughter's adult income. Centro de Estudios Distributivos, Laborales y Sociales |
description |
Recent work on the conditional mean model offers the possibility of addressing misreporting of participation in social programs, which is common and has increased in all major surveys. However, researchers who employ quantile regression continue to encounter challenges in terms of estimation and statistical inference. In this work, we propose a simple two-step estimator for a quantile regression model with endogenous misreporting. The identification of the model uses a parametric first stage and information related to participation and misreporting. We show that the estimator is consistent and asymptotically normal. We also establish that a bootstrap procedure is asymptotically valid for approximating the distribution of the estimator. Simulation studies show the small sample behavior of the estimator in comparison with other methods, including a new three-step estimator. Finally, we illustrate the novel approach using U.S. survey data to estimate the intergenerational effect of mother's participation on welfare on daughter's adult income. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/workingPaper info:eu-repo/semantics/submittedVersion Documento de trabajo http://purl.org/coar/resource_type/c_8042 info:ar-repo/semantics/documentoDeTrabajo |
format |
workingPaper |
status_str |
submittedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/157397 |
url |
http://sedici.unlp.edu.ar/handle/10915/157397 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.cedlas.econo.unlp.edu.ar/wp/wp-content/uploads/doc_cedlas318.pdf?dl=0 info:eu-repo/semantics/altIdentifier/issn/1853-0168 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260633802768384 |
score |
13.13397 |