Testing linearity against threshold effects: uniform inference in quantile regression
- Autores
- Galvao, Antonio F.; Kato, Kengo; Montes Rojas, Gabriel Victorio; Olmo, Jose
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper develops a uniform test of linearity against threshold effects in the quantile regression framework. The test is based on the supremum of the Wald process over the space of quantile and threshold parameters. We establish the limiting null distribution of the test statistic for stationary weakly dependent processes, and propose a simulation method to approximate the critical values. The proposed simulation method makes the test easy to implement. Monte Carlo experiments show that the proposed test has good size and reasonable power against non-linear threshold models.
Fil: Galvao, Antonio F.. University of Iowa; Estados Unidos
Fil: Kato, Kengo. University of Tokyo; Japón
Fil: Montes Rojas, Gabriel Victorio. City University of London; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Olmo, Jose. Centro Universitario de la Defensa; España - Materia
-
Threshold Models
Quantile Regression
Uniform Tests - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/33111
Ver los metadatos del registro completo
id |
CONICETDig_fde8c57b86ebbf0d620472a5cfcb4533 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/33111 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Testing linearity against threshold effects: uniform inference in quantile regressionGalvao, Antonio F.Kato, KengoMontes Rojas, Gabriel VictorioOlmo, JoseThreshold ModelsQuantile RegressionUniform Testshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This paper develops a uniform test of linearity against threshold effects in the quantile regression framework. The test is based on the supremum of the Wald process over the space of quantile and threshold parameters. We establish the limiting null distribution of the test statistic for stationary weakly dependent processes, and propose a simulation method to approximate the critical values. The proposed simulation method makes the test easy to implement. Monte Carlo experiments show that the proposed test has good size and reasonable power against non-linear threshold models.Fil: Galvao, Antonio F.. University of Iowa; Estados UnidosFil: Kato, Kengo. University of Tokyo; JapónFil: Montes Rojas, Gabriel Victorio. City University of London; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Olmo, Jose. Centro Universitario de la Defensa; EspañaSpringer Heidelberg2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33111Kato, Kengo; Olmo, Jose; Galvao, Antonio F.; Montes Rojas, Gabriel Victorio; Testing linearity against threshold effects: uniform inference in quantile regression; Springer Heidelberg; Annals of the Institute of Statistical Mathematics; 66; 2; 4-2014; 413-4390020-31571572-9052CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10463-013-0418-9info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10463-013-0418-9info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:46:45Zoai:ri.conicet.gov.ar:11336/33111instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:46:45.625CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Testing linearity against threshold effects: uniform inference in quantile regression |
title |
Testing linearity against threshold effects: uniform inference in quantile regression |
spellingShingle |
Testing linearity against threshold effects: uniform inference in quantile regression Galvao, Antonio F. Threshold Models Quantile Regression Uniform Tests |
title_short |
Testing linearity against threshold effects: uniform inference in quantile regression |
title_full |
Testing linearity against threshold effects: uniform inference in quantile regression |
title_fullStr |
Testing linearity against threshold effects: uniform inference in quantile regression |
title_full_unstemmed |
Testing linearity against threshold effects: uniform inference in quantile regression |
title_sort |
Testing linearity against threshold effects: uniform inference in quantile regression |
dc.creator.none.fl_str_mv |
Galvao, Antonio F. Kato, Kengo Montes Rojas, Gabriel Victorio Olmo, Jose |
author |
Galvao, Antonio F. |
author_facet |
Galvao, Antonio F. Kato, Kengo Montes Rojas, Gabriel Victorio Olmo, Jose |
author_role |
author |
author2 |
Kato, Kengo Montes Rojas, Gabriel Victorio Olmo, Jose |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Threshold Models Quantile Regression Uniform Tests |
topic |
Threshold Models Quantile Regression Uniform Tests |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This paper develops a uniform test of linearity against threshold effects in the quantile regression framework. The test is based on the supremum of the Wald process over the space of quantile and threshold parameters. We establish the limiting null distribution of the test statistic for stationary weakly dependent processes, and propose a simulation method to approximate the critical values. The proposed simulation method makes the test easy to implement. Monte Carlo experiments show that the proposed test has good size and reasonable power against non-linear threshold models. Fil: Galvao, Antonio F.. University of Iowa; Estados Unidos Fil: Kato, Kengo. University of Tokyo; Japón Fil: Montes Rojas, Gabriel Victorio. City University of London; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Olmo, Jose. Centro Universitario de la Defensa; España |
description |
This paper develops a uniform test of linearity against threshold effects in the quantile regression framework. The test is based on the supremum of the Wald process over the space of quantile and threshold parameters. We establish the limiting null distribution of the test statistic for stationary weakly dependent processes, and propose a simulation method to approximate the critical values. The proposed simulation method makes the test easy to implement. Monte Carlo experiments show that the proposed test has good size and reasonable power against non-linear threshold models. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/33111 Kato, Kengo; Olmo, Jose; Galvao, Antonio F.; Montes Rojas, Gabriel Victorio; Testing linearity against threshold effects: uniform inference in quantile regression; Springer Heidelberg; Annals of the Institute of Statistical Mathematics; 66; 2; 4-2014; 413-439 0020-3157 1572-9052 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/33111 |
identifier_str_mv |
Kato, Kengo; Olmo, Jose; Galvao, Antonio F.; Montes Rojas, Gabriel Victorio; Testing linearity against threshold effects: uniform inference in quantile regression; Springer Heidelberg; Annals of the Institute of Statistical Mathematics; 66; 2; 4-2014; 413-439 0020-3157 1572-9052 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10463-013-0418-9 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10463-013-0418-9 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer Heidelberg |
publisher.none.fl_str_mv |
Springer Heidelberg |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614509530972160 |
score |
13.070432 |