The Prandtl-Tomlinson model of friction with stochastic driving
- Autores
- Jagla, Eduardo Alberto
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider the classical PrandtlTomlinson model of a particle moving on a corrugated potential, pulled by a spring. In the usual situation in which pulling acts at constant velocity γ, the model displays an average friction force δ that relates to γ(for small γ) as γ∼ (δ -δc)β, where δc is a critical friction force. The possible values of β are well known in terms of the analytical properties of the corrugated potential. We study here the situation in which the pulling has, in addition to the constant velocity term, a stochastic term of mechanical origin. We analytically show how this term modifies the force-velocity dependence close to the critical force, and give the value of β in terms of the analytical properties of the corrugation potential and the scaling properties of the stochastic driving, encoded in the value of its Hurst exponent.
Fil: Jagla, Eduardo Alberto. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
FLUCTUATION PHENOMENA
FRICTION
STOCHASTIC PARTICLE DYNAMICS
STOCHASTIC PROCESSES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/98004
Ver los metadatos del registro completo
id |
CONICETDig_959c0e1d411bce84a17d1f82a858523f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/98004 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The Prandtl-Tomlinson model of friction with stochastic drivingJagla, Eduardo AlbertoFLUCTUATION PHENOMENAFRICTIONSTOCHASTIC PARTICLE DYNAMICSSTOCHASTIC PROCESSEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We consider the classical PrandtlTomlinson model of a particle moving on a corrugated potential, pulled by a spring. In the usual situation in which pulling acts at constant velocity γ, the model displays an average friction force δ that relates to γ(for small γ) as γ∼ (δ -δc)β, where δc is a critical friction force. The possible values of β are well known in terms of the analytical properties of the corrugated potential. We study here the situation in which the pulling has, in addition to the constant velocity term, a stochastic term of mechanical origin. We analytically show how this term modifies the force-velocity dependence close to the critical force, and give the value of β in terms of the analytical properties of the corrugation potential and the scaling properties of the stochastic driving, encoded in the value of its Hurst exponent.Fil: Jagla, Eduardo Alberto. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaIOP Publishing2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98004Jagla, Eduardo Alberto; The Prandtl-Tomlinson model of friction with stochastic driving; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 2018; 1; 1-2018; 1-141742-5468CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/aa9db2info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1709.09604info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:43:09Zoai:ri.conicet.gov.ar:11336/98004instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:43:09.766CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The Prandtl-Tomlinson model of friction with stochastic driving |
title |
The Prandtl-Tomlinson model of friction with stochastic driving |
spellingShingle |
The Prandtl-Tomlinson model of friction with stochastic driving Jagla, Eduardo Alberto FLUCTUATION PHENOMENA FRICTION STOCHASTIC PARTICLE DYNAMICS STOCHASTIC PROCESSES |
title_short |
The Prandtl-Tomlinson model of friction with stochastic driving |
title_full |
The Prandtl-Tomlinson model of friction with stochastic driving |
title_fullStr |
The Prandtl-Tomlinson model of friction with stochastic driving |
title_full_unstemmed |
The Prandtl-Tomlinson model of friction with stochastic driving |
title_sort |
The Prandtl-Tomlinson model of friction with stochastic driving |
dc.creator.none.fl_str_mv |
Jagla, Eduardo Alberto |
author |
Jagla, Eduardo Alberto |
author_facet |
Jagla, Eduardo Alberto |
author_role |
author |
dc.subject.none.fl_str_mv |
FLUCTUATION PHENOMENA FRICTION STOCHASTIC PARTICLE DYNAMICS STOCHASTIC PROCESSES |
topic |
FLUCTUATION PHENOMENA FRICTION STOCHASTIC PARTICLE DYNAMICS STOCHASTIC PROCESSES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider the classical PrandtlTomlinson model of a particle moving on a corrugated potential, pulled by a spring. In the usual situation in which pulling acts at constant velocity γ, the model displays an average friction force δ that relates to γ(for small γ) as γ∼ (δ -δc)β, where δc is a critical friction force. The possible values of β are well known in terms of the analytical properties of the corrugated potential. We study here the situation in which the pulling has, in addition to the constant velocity term, a stochastic term of mechanical origin. We analytically show how this term modifies the force-velocity dependence close to the critical force, and give the value of β in terms of the analytical properties of the corrugation potential and the scaling properties of the stochastic driving, encoded in the value of its Hurst exponent. Fil: Jagla, Eduardo Alberto. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We consider the classical PrandtlTomlinson model of a particle moving on a corrugated potential, pulled by a spring. In the usual situation in which pulling acts at constant velocity γ, the model displays an average friction force δ that relates to γ(for small γ) as γ∼ (δ -δc)β, where δc is a critical friction force. The possible values of β are well known in terms of the analytical properties of the corrugated potential. We study here the situation in which the pulling has, in addition to the constant velocity term, a stochastic term of mechanical origin. We analytically show how this term modifies the force-velocity dependence close to the critical force, and give the value of β in terms of the analytical properties of the corrugation potential and the scaling properties of the stochastic driving, encoded in the value of its Hurst exponent. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/98004 Jagla, Eduardo Alberto; The Prandtl-Tomlinson model of friction with stochastic driving; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 2018; 1; 1-2018; 1-14 1742-5468 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/98004 |
identifier_str_mv |
Jagla, Eduardo Alberto; The Prandtl-Tomlinson model of friction with stochastic driving; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 2018; 1; 1-2018; 1-14 1742-5468 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/aa9db2 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1709.09604 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614466161868800 |
score |
13.070432 |