The Prandtl-Tomlinson model of friction with stochastic driving

Autores
Jagla, Eduardo Alberto
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider the classical PrandtlTomlinson model of a particle moving on a corrugated potential, pulled by a spring. In the usual situation in which pulling acts at constant velocity γ, the model displays an average friction force δ that relates to γ(for small γ) as γ∼ (δ -δc)β, where δc is a critical friction force. The possible values of β are well known in terms of the analytical properties of the corrugated potential. We study here the situation in which the pulling has, in addition to the constant velocity term, a stochastic term of mechanical origin. We analytically show how this term modifies the force-velocity dependence close to the critical force, and give the value of β in terms of the analytical properties of the corrugation potential and the scaling properties of the stochastic driving, encoded in the value of its Hurst exponent.
Fil: Jagla, Eduardo Alberto. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
FLUCTUATION PHENOMENA
FRICTION
STOCHASTIC PARTICLE DYNAMICS
STOCHASTIC PROCESSES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/98004

id CONICETDig_959c0e1d411bce84a17d1f82a858523f
oai_identifier_str oai:ri.conicet.gov.ar:11336/98004
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The Prandtl-Tomlinson model of friction with stochastic drivingJagla, Eduardo AlbertoFLUCTUATION PHENOMENAFRICTIONSTOCHASTIC PARTICLE DYNAMICSSTOCHASTIC PROCESSEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We consider the classical PrandtlTomlinson model of a particle moving on a corrugated potential, pulled by a spring. In the usual situation in which pulling acts at constant velocity γ, the model displays an average friction force δ that relates to γ(for small γ) as γ∼ (δ -δc)β, where δc is a critical friction force. The possible values of β are well known in terms of the analytical properties of the corrugated potential. We study here the situation in which the pulling has, in addition to the constant velocity term, a stochastic term of mechanical origin. We analytically show how this term modifies the force-velocity dependence close to the critical force, and give the value of β in terms of the analytical properties of the corrugation potential and the scaling properties of the stochastic driving, encoded in the value of its Hurst exponent.Fil: Jagla, Eduardo Alberto. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaIOP Publishing2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98004Jagla, Eduardo Alberto; The Prandtl-Tomlinson model of friction with stochastic driving; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 2018; 1; 1-2018; 1-141742-5468CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/aa9db2info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1709.09604info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:43:09Zoai:ri.conicet.gov.ar:11336/98004instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:43:09.766CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The Prandtl-Tomlinson model of friction with stochastic driving
title The Prandtl-Tomlinson model of friction with stochastic driving
spellingShingle The Prandtl-Tomlinson model of friction with stochastic driving
Jagla, Eduardo Alberto
FLUCTUATION PHENOMENA
FRICTION
STOCHASTIC PARTICLE DYNAMICS
STOCHASTIC PROCESSES
title_short The Prandtl-Tomlinson model of friction with stochastic driving
title_full The Prandtl-Tomlinson model of friction with stochastic driving
title_fullStr The Prandtl-Tomlinson model of friction with stochastic driving
title_full_unstemmed The Prandtl-Tomlinson model of friction with stochastic driving
title_sort The Prandtl-Tomlinson model of friction with stochastic driving
dc.creator.none.fl_str_mv Jagla, Eduardo Alberto
author Jagla, Eduardo Alberto
author_facet Jagla, Eduardo Alberto
author_role author
dc.subject.none.fl_str_mv FLUCTUATION PHENOMENA
FRICTION
STOCHASTIC PARTICLE DYNAMICS
STOCHASTIC PROCESSES
topic FLUCTUATION PHENOMENA
FRICTION
STOCHASTIC PARTICLE DYNAMICS
STOCHASTIC PROCESSES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We consider the classical PrandtlTomlinson model of a particle moving on a corrugated potential, pulled by a spring. In the usual situation in which pulling acts at constant velocity γ, the model displays an average friction force δ that relates to γ(for small γ) as γ∼ (δ -δc)β, where δc is a critical friction force. The possible values of β are well known in terms of the analytical properties of the corrugated potential. We study here the situation in which the pulling has, in addition to the constant velocity term, a stochastic term of mechanical origin. We analytically show how this term modifies the force-velocity dependence close to the critical force, and give the value of β in terms of the analytical properties of the corrugation potential and the scaling properties of the stochastic driving, encoded in the value of its Hurst exponent.
Fil: Jagla, Eduardo Alberto. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We consider the classical PrandtlTomlinson model of a particle moving on a corrugated potential, pulled by a spring. In the usual situation in which pulling acts at constant velocity γ, the model displays an average friction force δ that relates to γ(for small γ) as γ∼ (δ -δc)β, where δc is a critical friction force. The possible values of β are well known in terms of the analytical properties of the corrugated potential. We study here the situation in which the pulling has, in addition to the constant velocity term, a stochastic term of mechanical origin. We analytically show how this term modifies the force-velocity dependence close to the critical force, and give the value of β in terms of the analytical properties of the corrugation potential and the scaling properties of the stochastic driving, encoded in the value of its Hurst exponent.
publishDate 2018
dc.date.none.fl_str_mv 2018-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/98004
Jagla, Eduardo Alberto; The Prandtl-Tomlinson model of friction with stochastic driving; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 2018; 1; 1-2018; 1-14
1742-5468
CONICET Digital
CONICET
url http://hdl.handle.net/11336/98004
identifier_str_mv Jagla, Eduardo Alberto; The Prandtl-Tomlinson model of friction with stochastic driving; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 2018; 1; 1-2018; 1-14
1742-5468
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/aa9db2
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1709.09604
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614466161868800
score 13.070432