Complementarity relation for irreversible processes near steady states

Autores
Santini, E; Carusela, María Florencia; Izquierdo, E. D.
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A relation giving a minimum for the irreversible work in quasi-equilibrium processes was derived by Sekimoto et al. [K. Sekimoto, S. Sasa, J. Phys. Soc. Japan 66 (1997) 3326] in the framework of stochastic energetics. This relation can also be written as a type of “uncertainty principle” in such a way that the precise determination of the Helmholtz free energy through the observation of the work 〈W〉 requires an indefinitely large experimental time Δt. In the present article, we extend this relation to the case of quasi-steady processes by using the concept of non-equilibrium Helmholtz free energy. We give a formulation of the second law for these processes that extends that presented by Sekimoto [K. Sekimoto, Prog. Theoret. Phys. Suppl. No. 130 (1998) 17] by a term of the first order in the inverse of the experimental time. As an application of our results, two possible experimental situations are considered: stretching of a RNA molecule and the drag of a dipolar particle in the presence of a gradient of electric force.
Fil: Santini, E. Comissão Nacional de Energia Nuclear; Brasil. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Centro Brasileiro de Pesquisas Físicas; Brasil
Fil: Carusela, María Florencia. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Izquierdo, E. D.. Universidad de Buenos Aires. Ciclo Básico Común; Argentina. Universidad de Buenos Aires. Facultad de Agronomia; Argentina
Materia
Stochastic Energetics
Langevin Equation
Thermodynamics
Fluctuation Phenomena
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/3853

id CONICETDig_88c067e0c662a49bc2ccf3a64f0bc34a
oai_identifier_str oai:ri.conicet.gov.ar:11336/3853
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Complementarity relation for irreversible processes near steady statesSantini, ECarusela, María FlorenciaIzquierdo, E. D.Stochastic EnergeticsLangevin EquationThermodynamicsFluctuation Phenomenahttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2A relation giving a minimum for the irreversible work in quasi-equilibrium processes was derived by Sekimoto et al. [K. Sekimoto, S. Sasa, J. Phys. Soc. Japan 66 (1997) 3326] in the framework of stochastic energetics. This relation can also be written as a type of “uncertainty principle” in such a way that the precise determination of the Helmholtz free energy through the observation of the work 〈W〉 requires an indefinitely large experimental time Δt. In the present article, we extend this relation to the case of quasi-steady processes by using the concept of non-equilibrium Helmholtz free energy. We give a formulation of the second law for these processes that extends that presented by Sekimoto [K. Sekimoto, Prog. Theoret. Phys. Suppl. No. 130 (1998) 17] by a term of the first order in the inverse of the experimental time. As an application of our results, two possible experimental situations are considered: stretching of a RNA molecule and the drag of a dipolar particle in the presence of a gradient of electric force.Fil: Santini, E. Comissão Nacional de Energia Nuclear; Brasil. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Centro Brasileiro de Pesquisas Físicas; BrasilFil: Carusela, María Florencia. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Izquierdo, E. D.. Universidad de Buenos Aires. Ciclo Básico Común; Argentina. Universidad de Buenos Aires. Facultad de Agronomia; ArgentinaElsevier2013-06-24info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3853Santini, E; Carusela, María Florencia; Izquierdo, E. D.; Complementarity relation for irreversible processes near steady states; Elsevier; Physica A: Statistical and Theoretical Physics; 392; 20; 24-6-2013; 4856-48670378-4371enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378437113005633info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2013.06.045info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1201.0923info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:19:25Zoai:ri.conicet.gov.ar:11336/3853instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:19:26.025CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Complementarity relation for irreversible processes near steady states
title Complementarity relation for irreversible processes near steady states
spellingShingle Complementarity relation for irreversible processes near steady states
Santini, E
Stochastic Energetics
Langevin Equation
Thermodynamics
Fluctuation Phenomena
title_short Complementarity relation for irreversible processes near steady states
title_full Complementarity relation for irreversible processes near steady states
title_fullStr Complementarity relation for irreversible processes near steady states
title_full_unstemmed Complementarity relation for irreversible processes near steady states
title_sort Complementarity relation for irreversible processes near steady states
dc.creator.none.fl_str_mv Santini, E
Carusela, María Florencia
Izquierdo, E. D.
author Santini, E
author_facet Santini, E
Carusela, María Florencia
Izquierdo, E. D.
author_role author
author2 Carusela, María Florencia
Izquierdo, E. D.
author2_role author
author
dc.subject.none.fl_str_mv Stochastic Energetics
Langevin Equation
Thermodynamics
Fluctuation Phenomena
topic Stochastic Energetics
Langevin Equation
Thermodynamics
Fluctuation Phenomena
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv A relation giving a minimum for the irreversible work in quasi-equilibrium processes was derived by Sekimoto et al. [K. Sekimoto, S. Sasa, J. Phys. Soc. Japan 66 (1997) 3326] in the framework of stochastic energetics. This relation can also be written as a type of “uncertainty principle” in such a way that the precise determination of the Helmholtz free energy through the observation of the work 〈W〉 requires an indefinitely large experimental time Δt. In the present article, we extend this relation to the case of quasi-steady processes by using the concept of non-equilibrium Helmholtz free energy. We give a formulation of the second law for these processes that extends that presented by Sekimoto [K. Sekimoto, Prog. Theoret. Phys. Suppl. No. 130 (1998) 17] by a term of the first order in the inverse of the experimental time. As an application of our results, two possible experimental situations are considered: stretching of a RNA molecule and the drag of a dipolar particle in the presence of a gradient of electric force.
Fil: Santini, E. Comissão Nacional de Energia Nuclear; Brasil. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Centro Brasileiro de Pesquisas Físicas; Brasil
Fil: Carusela, María Florencia. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Izquierdo, E. D.. Universidad de Buenos Aires. Ciclo Básico Común; Argentina. Universidad de Buenos Aires. Facultad de Agronomia; Argentina
description A relation giving a minimum for the irreversible work in quasi-equilibrium processes was derived by Sekimoto et al. [K. Sekimoto, S. Sasa, J. Phys. Soc. Japan 66 (1997) 3326] in the framework of stochastic energetics. This relation can also be written as a type of “uncertainty principle” in such a way that the precise determination of the Helmholtz free energy through the observation of the work 〈W〉 requires an indefinitely large experimental time Δt. In the present article, we extend this relation to the case of quasi-steady processes by using the concept of non-equilibrium Helmholtz free energy. We give a formulation of the second law for these processes that extends that presented by Sekimoto [K. Sekimoto, Prog. Theoret. Phys. Suppl. No. 130 (1998) 17] by a term of the first order in the inverse of the experimental time. As an application of our results, two possible experimental situations are considered: stretching of a RNA molecule and the drag of a dipolar particle in the presence of a gradient of electric force.
publishDate 2013
dc.date.none.fl_str_mv 2013-06-24
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/3853
Santini, E; Carusela, María Florencia; Izquierdo, E. D.; Complementarity relation for irreversible processes near steady states; Elsevier; Physica A: Statistical and Theoretical Physics; 392; 20; 24-6-2013; 4856-4867
0378-4371
url http://hdl.handle.net/11336/3853
identifier_str_mv Santini, E; Carusela, María Florencia; Izquierdo, E. D.; Complementarity relation for irreversible processes near steady states; Elsevier; Physica A: Statistical and Theoretical Physics; 392; 20; 24-6-2013; 4856-4867
0378-4371
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378437113005633
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physa.2013.06.045
info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1201.0923
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614165671444480
score 13.070432