Understanding the Lévy Ratchets in Terms of Lévy Jumps
- Autores
- Ibáñez, Santiago Agustín; Risau Gusman, Sebastian Luis; Bouzat, Sebastian
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We investigate the overdamped dynamics of a particle in a spatially periodic potential with broken reflection symmetry and subject to the action of a symmetric white Lévy noise. The system (referred to as the Lévy ratchet) has been previously studied using both Langevin and fractional Fokker–Planck formalisms, with the main find being the existence of a preferred direction of motion toward the steepest slope of the potential, producing a non-vanishing current. In this contribution we develop a semi-analytical study combining the Fokker–Planck and Langevin formalisms to explore the role of Lévy flights on the system dynamics. We analyze the departure positions of Lévy jumps that take the particle out of a potential well as well as the rates and lengths of such jumps, and we study the way in which long jumps determine the non-vanishing current. We also discuss the essential difference from the Gaussian-noise case (producing no current). Finally we study the current for different potential shapes as a function of the amplitude of the potential barrier. In particular, we show that standard Lévy ratchets produce a non-vanishing current in the infinite-barrier limit. This latter counterintuitive result can be easily understood in terms of the long Lévy jumps and analytically demonstrated.
Fil: Ibáñez, Santiago Agustín. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Risau Gusman, Sebastian Luis. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Bouzat, Sebastian. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Diffusion
Transport Processes
Stochastic Particle Dynamics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/9061
Ver los metadatos del registro completo
id |
CONICETDig_da530d6b69f9e56960132e42f77b66d1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/9061 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Understanding the Lévy Ratchets in Terms of Lévy JumpsIbáñez, Santiago AgustínRisau Gusman, Sebastian LuisBouzat, SebastianDiffusionTransport ProcessesStochastic Particle Dynamicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We investigate the overdamped dynamics of a particle in a spatially periodic potential with broken reflection symmetry and subject to the action of a symmetric white Lévy noise. The system (referred to as the Lévy ratchet) has been previously studied using both Langevin and fractional Fokker–Planck formalisms, with the main find being the existence of a preferred direction of motion toward the steepest slope of the potential, producing a non-vanishing current. In this contribution we develop a semi-analytical study combining the Fokker–Planck and Langevin formalisms to explore the role of Lévy flights on the system dynamics. We analyze the departure positions of Lévy jumps that take the particle out of a potential well as well as the rates and lengths of such jumps, and we study the way in which long jumps determine the non-vanishing current. We also discuss the essential difference from the Gaussian-noise case (producing no current). Finally we study the current for different potential shapes as a function of the amplitude of the potential barrier. In particular, we show that standard Lévy ratchets produce a non-vanishing current in the infinite-barrier limit. This latter counterintuitive result can be easily understood in terms of the long Lévy jumps and analytically demonstrated.Fil: Ibáñez, Santiago Agustín. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Risau Gusman, Sebastian Luis. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bouzat, Sebastian. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaIop Publishing2013-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/9061Ibáñez, Santiago Agustín; Risau Gusman, Sebastian Luis; Bouzat, Sebastian; Understanding the Lévy Ratchets in Terms of Lévy Jumps; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 2013; 2007; 2-2013; 1-191742-54681742-5468enginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1742-5468/2013/02/P02007/metainfo:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/2013/02/P02007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:08:44Zoai:ri.conicet.gov.ar:11336/9061instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:08:45.206CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Understanding the Lévy Ratchets in Terms of Lévy Jumps |
title |
Understanding the Lévy Ratchets in Terms of Lévy Jumps |
spellingShingle |
Understanding the Lévy Ratchets in Terms of Lévy Jumps Ibáñez, Santiago Agustín Diffusion Transport Processes Stochastic Particle Dynamics |
title_short |
Understanding the Lévy Ratchets in Terms of Lévy Jumps |
title_full |
Understanding the Lévy Ratchets in Terms of Lévy Jumps |
title_fullStr |
Understanding the Lévy Ratchets in Terms of Lévy Jumps |
title_full_unstemmed |
Understanding the Lévy Ratchets in Terms of Lévy Jumps |
title_sort |
Understanding the Lévy Ratchets in Terms of Lévy Jumps |
dc.creator.none.fl_str_mv |
Ibáñez, Santiago Agustín Risau Gusman, Sebastian Luis Bouzat, Sebastian |
author |
Ibáñez, Santiago Agustín |
author_facet |
Ibáñez, Santiago Agustín Risau Gusman, Sebastian Luis Bouzat, Sebastian |
author_role |
author |
author2 |
Risau Gusman, Sebastian Luis Bouzat, Sebastian |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Diffusion Transport Processes Stochastic Particle Dynamics |
topic |
Diffusion Transport Processes Stochastic Particle Dynamics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We investigate the overdamped dynamics of a particle in a spatially periodic potential with broken reflection symmetry and subject to the action of a symmetric white Lévy noise. The system (referred to as the Lévy ratchet) has been previously studied using both Langevin and fractional Fokker–Planck formalisms, with the main find being the existence of a preferred direction of motion toward the steepest slope of the potential, producing a non-vanishing current. In this contribution we develop a semi-analytical study combining the Fokker–Planck and Langevin formalisms to explore the role of Lévy flights on the system dynamics. We analyze the departure positions of Lévy jumps that take the particle out of a potential well as well as the rates and lengths of such jumps, and we study the way in which long jumps determine the non-vanishing current. We also discuss the essential difference from the Gaussian-noise case (producing no current). Finally we study the current for different potential shapes as a function of the amplitude of the potential barrier. In particular, we show that standard Lévy ratchets produce a non-vanishing current in the infinite-barrier limit. This latter counterintuitive result can be easily understood in terms of the long Lévy jumps and analytically demonstrated. Fil: Ibáñez, Santiago Agustín. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Risau Gusman, Sebastian Luis. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Bouzat, Sebastian. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We investigate the overdamped dynamics of a particle in a spatially periodic potential with broken reflection symmetry and subject to the action of a symmetric white Lévy noise. The system (referred to as the Lévy ratchet) has been previously studied using both Langevin and fractional Fokker–Planck formalisms, with the main find being the existence of a preferred direction of motion toward the steepest slope of the potential, producing a non-vanishing current. In this contribution we develop a semi-analytical study combining the Fokker–Planck and Langevin formalisms to explore the role of Lévy flights on the system dynamics. We analyze the departure positions of Lévy jumps that take the particle out of a potential well as well as the rates and lengths of such jumps, and we study the way in which long jumps determine the non-vanishing current. We also discuss the essential difference from the Gaussian-noise case (producing no current). Finally we study the current for different potential shapes as a function of the amplitude of the potential barrier. In particular, we show that standard Lévy ratchets produce a non-vanishing current in the infinite-barrier limit. This latter counterintuitive result can be easily understood in terms of the long Lévy jumps and analytically demonstrated. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/9061 Ibáñez, Santiago Agustín; Risau Gusman, Sebastian Luis; Bouzat, Sebastian; Understanding the Lévy Ratchets in Terms of Lévy Jumps; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 2013; 2007; 2-2013; 1-19 1742-5468 1742-5468 |
url |
http://hdl.handle.net/11336/9061 |
identifier_str_mv |
Ibáñez, Santiago Agustín; Risau Gusman, Sebastian Luis; Bouzat, Sebastian; Understanding the Lévy Ratchets in Terms of Lévy Jumps; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 2013; 2007; 2-2013; 1-19 1742-5468 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1742-5468/2013/02/P02007/meta info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/2013/02/P02007 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Iop Publishing |
publisher.none.fl_str_mv |
Iop Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083234383790080 |
score |
13.22299 |