Contrasting chaotic with stochastic dynamics via ordinal transition networks
- Autores
- Olivares, F.; Olivares, F.; Zanin, M.; Zanin, M.; Zunino, Luciano José; Zunino, Luciano José; Pérez, D.G.; Pérez, D.G.
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce a representation space to contrast chaotic with stochastic dynamics. Following the complex network representation of a time series through ordinal pattern transitions, we propose to assign each system a position in a two-dimensional plane defined by the permutation entropy of the network (global network quantifier) and the minimum value of the permutation entropy of the nodes (local network quantifier). The numerical analysis of representative chaotic maps and stochastic systems shows that the proposed approach is able to distinguish linear from non-linear dynamical systems by different planar locations. Additionally, we show that this characterization is robust when observational noise is considered. Experimental applications allow us to validate the numerical findings and to conclude that this approach is useful in practical contexts.
We introduce a representation space to contrast chaotic with stochastic dynamics. Following the complex network representation of a time series through ordinal pattern transitions, we propose to assign each system a position in a two-dimensional plane defined by the permutation entropy of the network (global network quantifier) and the minimum value of the permutation entropy of the nodes (local network quantifier). The numerical analysis of representative chaotic maps and stochastic systems shows that the proposed approach is able to distinguish linear from non-linear dynamical systems by different planar locations. Additionally, we show that this characterization is robust when observational noise is considered. Experimental applications allow us to validate the numerical findings and to conclude that this approach is useful in practical contexts.
Fil: Olivares, F.. Pontificia Universidad Católica de Valparaíso; Chile
Fil: Olivares, F.. Pontificia Universidad Católica de Valparaíso; Chile
Fil: Zanin, M.. Universidad Politécnica de Madrid; España
Fil: Zanin, M.. Universidad Politécnica de Madrid; España
Fil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina
Fil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina
Fil: Pérez, D.G.. Pontificia Universidad Católica de Valparaíso; Chile
Fil: Pérez, D.G.. Pontificia Universidad Católica de Valparaíso; Chile - Materia
-
CHAOS
CHAOS
NONLINEAR DYNAMICS
NONLINEAR DYNAMICS
STOCHASTIC PROCESSES
STOCHASTIC PROCESSES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/144097
Ver los metadatos del registro completo
id |
CONICETDig_fd1ef507daf6be4283a27534fdb90d78 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/144097 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Contrasting chaotic with stochastic dynamics via ordinal transition networksContrasting chaotic with stochastic dynamics via ordinal transition networksOlivares, F.Olivares, F.Zanin, M.Zanin, M.Zunino, Luciano JoséZunino, Luciano JoséPérez, D.G.Pérez, D.G.CHAOSCHAOSNONLINEAR DYNAMICSNONLINEAR DYNAMICSSTOCHASTIC PROCESSESSTOCHASTIC PROCESSEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1We introduce a representation space to contrast chaotic with stochastic dynamics. Following the complex network representation of a time series through ordinal pattern transitions, we propose to assign each system a position in a two-dimensional plane defined by the permutation entropy of the network (global network quantifier) and the minimum value of the permutation entropy of the nodes (local network quantifier). The numerical analysis of representative chaotic maps and stochastic systems shows that the proposed approach is able to distinguish linear from non-linear dynamical systems by different planar locations. Additionally, we show that this characterization is robust when observational noise is considered. Experimental applications allow us to validate the numerical findings and to conclude that this approach is useful in practical contexts.We introduce a representation space to contrast chaotic with stochastic dynamics. Following the complex network representation of a time series through ordinal pattern transitions, we propose to assign each system a position in a two-dimensional plane defined by the permutation entropy of the network (global network quantifier) and the minimum value of the permutation entropy of the nodes (local network quantifier). The numerical analysis of representative chaotic maps and stochastic systems shows that the proposed approach is able to distinguish linear from non-linear dynamical systems by different planar locations. Additionally, we show that this characterization is robust when observational noise is considered. Experimental applications allow us to validate the numerical findings and to conclude that this approach is useful in practical contexts.Fil: Olivares, F.. Pontificia Universidad Católica de Valparaíso; ChileFil: Olivares, F.. Pontificia Universidad Católica de Valparaíso; ChileFil: Zanin, M.. Universidad Politécnica de Madrid; EspañaFil: Zanin, M.. Universidad Politécnica de Madrid; EspañaFil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; ArgentinaFil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; ArgentinaFil: Pérez, D.G.. Pontificia Universidad Católica de Valparaíso; ChileFil: Pérez, D.G.. Pontificia Universidad Católica de Valparaíso; ChileAmerican Institute of PhysicsAmerican Institute of Physics2020-06-012020-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/144097Olivares, F.; Zanin, M.; Zunino, Luciano José; Pérez, D.G.; Contrasting chaotic with stochastic dynamics via ordinal transition networks; American Institute of Physics; Chaos; 30; 6; 1-6-2020; 1-13Olivares, F.; Zanin, M.; Zunino, Luciano José; Pérez, D.G.; Contrasting chaotic with stochastic dynamics via ordinal transition networks; American Institute of Physics; Chaos; 30; 6; 1-6-2020; 1-131054-15001054-15001089-76821089-7682CONICET DigitalCONICETengenginfo:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.5142500info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.5142500info:eu-repo/semantics/altIdentifier/doi/10.1063/1.5142500info:eu-repo/semantics/altIdentifier/doi/10.1063/1.5142500info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:04:00Zoai:ri.conicet.gov.ar:11336/144097instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:04:00.567CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Contrasting chaotic with stochastic dynamics via ordinal transition networks Contrasting chaotic with stochastic dynamics via ordinal transition networks |
title |
Contrasting chaotic with stochastic dynamics via ordinal transition networks |
spellingShingle |
Contrasting chaotic with stochastic dynamics via ordinal transition networks Olivares, F. CHAOS CHAOS NONLINEAR DYNAMICS NONLINEAR DYNAMICS STOCHASTIC PROCESSES STOCHASTIC PROCESSES |
title_short |
Contrasting chaotic with stochastic dynamics via ordinal transition networks |
title_full |
Contrasting chaotic with stochastic dynamics via ordinal transition networks |
title_fullStr |
Contrasting chaotic with stochastic dynamics via ordinal transition networks |
title_full_unstemmed |
Contrasting chaotic with stochastic dynamics via ordinal transition networks |
title_sort |
Contrasting chaotic with stochastic dynamics via ordinal transition networks |
dc.creator.none.fl_str_mv |
Olivares, F. Olivares, F. Zanin, M. Zanin, M. Zunino, Luciano José Zunino, Luciano José Pérez, D.G. Pérez, D.G. |
author |
Olivares, F. |
author_facet |
Olivares, F. Zanin, M. Zunino, Luciano José Pérez, D.G. |
author_role |
author |
author2 |
Zanin, M. Zunino, Luciano José Pérez, D.G. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
CHAOS CHAOS NONLINEAR DYNAMICS NONLINEAR DYNAMICS STOCHASTIC PROCESSES STOCHASTIC PROCESSES |
topic |
CHAOS CHAOS NONLINEAR DYNAMICS NONLINEAR DYNAMICS STOCHASTIC PROCESSES STOCHASTIC PROCESSES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We introduce a representation space to contrast chaotic with stochastic dynamics. Following the complex network representation of a time series through ordinal pattern transitions, we propose to assign each system a position in a two-dimensional plane defined by the permutation entropy of the network (global network quantifier) and the minimum value of the permutation entropy of the nodes (local network quantifier). The numerical analysis of representative chaotic maps and stochastic systems shows that the proposed approach is able to distinguish linear from non-linear dynamical systems by different planar locations. Additionally, we show that this characterization is robust when observational noise is considered. Experimental applications allow us to validate the numerical findings and to conclude that this approach is useful in practical contexts. We introduce a representation space to contrast chaotic with stochastic dynamics. Following the complex network representation of a time series through ordinal pattern transitions, we propose to assign each system a position in a two-dimensional plane defined by the permutation entropy of the network (global network quantifier) and the minimum value of the permutation entropy of the nodes (local network quantifier). The numerical analysis of representative chaotic maps and stochastic systems shows that the proposed approach is able to distinguish linear from non-linear dynamical systems by different planar locations. Additionally, we show that this characterization is robust when observational noise is considered. Experimental applications allow us to validate the numerical findings and to conclude that this approach is useful in practical contexts. Fil: Olivares, F.. Pontificia Universidad Católica de Valparaíso; Chile Fil: Olivares, F.. Pontificia Universidad Católica de Valparaíso; Chile Fil: Zanin, M.. Universidad Politécnica de Madrid; España Fil: Zanin, M.. Universidad Politécnica de Madrid; España Fil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina Fil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina Fil: Pérez, D.G.. Pontificia Universidad Católica de Valparaíso; Chile Fil: Pérez, D.G.. Pontificia Universidad Católica de Valparaíso; Chile |
description |
We introduce a representation space to contrast chaotic with stochastic dynamics. Following the complex network representation of a time series through ordinal pattern transitions, we propose to assign each system a position in a two-dimensional plane defined by the permutation entropy of the network (global network quantifier) and the minimum value of the permutation entropy of the nodes (local network quantifier). The numerical analysis of representative chaotic maps and stochastic systems shows that the proposed approach is able to distinguish linear from non-linear dynamical systems by different planar locations. Additionally, we show that this characterization is robust when observational noise is considered. Experimental applications allow us to validate the numerical findings and to conclude that this approach is useful in practical contexts. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-06-01 2020-06-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/144097 Olivares, F.; Zanin, M.; Zunino, Luciano José; Pérez, D.G.; Contrasting chaotic with stochastic dynamics via ordinal transition networks; American Institute of Physics; Chaos; 30; 6; 1-6-2020; 1-13 Olivares, F.; Zanin, M.; Zunino, Luciano José; Pérez, D.G.; Contrasting chaotic with stochastic dynamics via ordinal transition networks; American Institute of Physics; Chaos; 30; 6; 1-6-2020; 1-13 1054-1500 1054-1500 1089-7682 1089-7682 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/144097 |
identifier_str_mv |
Olivares, F.; Zanin, M.; Zunino, Luciano José; Pérez, D.G.; Contrasting chaotic with stochastic dynamics via ordinal transition networks; American Institute of Physics; Chaos; 30; 6; 1-6-2020; 1-13 1054-1500 1089-7682 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.5142500 info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.5142500 info:eu-repo/semantics/altIdentifier/doi/10.1063/1.5142500 info:eu-repo/semantics/altIdentifier/doi/10.1063/1.5142500 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269831904100352 |
score |
13.13397 |