Central limit theorem for a class of globally correlated random variables
- Autores
- Budini, Adrian Adolfo
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The standard central limit theorem with a Gaussian attractor for the sum of independent random variables may lose its validity in the presence of strong correlations between the added random contributions. Here, we study this problem for similar interchangeable globally correlated random variables. Under these conditions, a hierarchical set of equations is derived for the conditional transition probabilities. This result allows us to define different classes of memory mechanisms that depend on a symmetric way on all involved variables. Depending on the correlation mechanisms and statistics of the single variables, the corresponding sums are characterized by distinct probability densities. For a class of urn models it is also possible to characterize their domain of attraction, which, as in the standard case, is parametrized by the probability density of each random variable. Symmetric and asymmetric q-Gaussian attractors (q<1) arise in a particular two-state case of these urn models.
Fil: Budini, Adrian Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Probability Theory, Stochastic Processes
Fluctuation Phenomena, Random Processes, Noise, And Brownian Motion
Systems Obeying Scaling Laws - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/61870
Ver los metadatos del registro completo
id |
CONICETDig_c0f2f2739bc0622239d87ca217bdb8b4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/61870 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Central limit theorem for a class of globally correlated random variablesBudini, Adrian AdolfoProbability Theory, Stochastic ProcessesFluctuation Phenomena, Random Processes, Noise, And Brownian MotionSystems Obeying Scaling Lawshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The standard central limit theorem with a Gaussian attractor for the sum of independent random variables may lose its validity in the presence of strong correlations between the added random contributions. Here, we study this problem for similar interchangeable globally correlated random variables. Under these conditions, a hierarchical set of equations is derived for the conditional transition probabilities. This result allows us to define different classes of memory mechanisms that depend on a symmetric way on all involved variables. Depending on the correlation mechanisms and statistics of the single variables, the corresponding sums are characterized by distinct probability densities. For a class of urn models it is also possible to characterize their domain of attraction, which, as in the standard case, is parametrized by the probability density of each random variable. Symmetric and asymmetric q-Gaussian attractors (q<1) arise in a particular two-state case of these urn models.Fil: Budini, Adrian Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Physical Society2016-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/61870Budini, Adrian Adolfo; Central limit theorem for a class of globally correlated random variables; American Physical Society; Physical Review E; 93; 6; 6-2016; 62114-621142470-0053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.93.062114info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.93.062114info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:26:28Zoai:ri.conicet.gov.ar:11336/61870instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:26:28.399CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Central limit theorem for a class of globally correlated random variables |
title |
Central limit theorem for a class of globally correlated random variables |
spellingShingle |
Central limit theorem for a class of globally correlated random variables Budini, Adrian Adolfo Probability Theory, Stochastic Processes Fluctuation Phenomena, Random Processes, Noise, And Brownian Motion Systems Obeying Scaling Laws |
title_short |
Central limit theorem for a class of globally correlated random variables |
title_full |
Central limit theorem for a class of globally correlated random variables |
title_fullStr |
Central limit theorem for a class of globally correlated random variables |
title_full_unstemmed |
Central limit theorem for a class of globally correlated random variables |
title_sort |
Central limit theorem for a class of globally correlated random variables |
dc.creator.none.fl_str_mv |
Budini, Adrian Adolfo |
author |
Budini, Adrian Adolfo |
author_facet |
Budini, Adrian Adolfo |
author_role |
author |
dc.subject.none.fl_str_mv |
Probability Theory, Stochastic Processes Fluctuation Phenomena, Random Processes, Noise, And Brownian Motion Systems Obeying Scaling Laws |
topic |
Probability Theory, Stochastic Processes Fluctuation Phenomena, Random Processes, Noise, And Brownian Motion Systems Obeying Scaling Laws |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The standard central limit theorem with a Gaussian attractor for the sum of independent random variables may lose its validity in the presence of strong correlations between the added random contributions. Here, we study this problem for similar interchangeable globally correlated random variables. Under these conditions, a hierarchical set of equations is derived for the conditional transition probabilities. This result allows us to define different classes of memory mechanisms that depend on a symmetric way on all involved variables. Depending on the correlation mechanisms and statistics of the single variables, the corresponding sums are characterized by distinct probability densities. For a class of urn models it is also possible to characterize their domain of attraction, which, as in the standard case, is parametrized by the probability density of each random variable. Symmetric and asymmetric q-Gaussian attractors (q<1) arise in a particular two-state case of these urn models. Fil: Budini, Adrian Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
The standard central limit theorem with a Gaussian attractor for the sum of independent random variables may lose its validity in the presence of strong correlations between the added random contributions. Here, we study this problem for similar interchangeable globally correlated random variables. Under these conditions, a hierarchical set of equations is derived for the conditional transition probabilities. This result allows us to define different classes of memory mechanisms that depend on a symmetric way on all involved variables. Depending on the correlation mechanisms and statistics of the single variables, the corresponding sums are characterized by distinct probability densities. For a class of urn models it is also possible to characterize their domain of attraction, which, as in the standard case, is parametrized by the probability density of each random variable. Symmetric and asymmetric q-Gaussian attractors (q<1) arise in a particular two-state case of these urn models. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/61870 Budini, Adrian Adolfo; Central limit theorem for a class of globally correlated random variables; American Physical Society; Physical Review E; 93; 6; 6-2016; 62114-62114 2470-0053 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/61870 |
identifier_str_mv |
Budini, Adrian Adolfo; Central limit theorem for a class of globally correlated random variables; American Physical Society; Physical Review E; 93; 6; 6-2016; 62114-62114 2470-0053 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.93.062114 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.93.062114 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083407868592128 |
score |
13.22299 |