Low-Frequency Electrical Conductivity of Trabecular Bone: Insights from In Silico Modeling

Autores
Cervantes, Maria Jose; Basiuk, Lucas Osvaldo; González Suárez, Ana; Carlevaro, Carlos Manuel; Irastorza, Ramiro Miguel
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Background: The electrical conductivity of trabecular bone at 100 kHz has recently been reported as a good predictor of bone volume fraction. However, quantifying its relationship with free water (or physiological solution) content and the conductivities of its constituents is still difficult. Methods: In this contribution, in silico models inspired by microCT images of trabecular bovine samples were used to build realistic geometries. The finite element method was applied to solve the electrical problem and to robustly fit the conductivity of the constituents to the literature data. The obtained effective electrical conductivity was compared with the Bruggeman three-medium mixture model using a physiological solution, bone marrow and a bone matrix. Results: The values for the physiological solution plus bone marrow (together as one material) and the bone matrix that best captured the bone volume fraction in the two-medium finite element model were + = 298.4 mS/m and = 21.0 mS/m, respectively. Additionally, relatively good results were obtained with the three-medium Bruggeman mixture model, with = 103 mS/m, = 21.0 mS/m and = 1200 mS/m. Simple linear relationships between the proportions of constituents depending on bone volume fraction were tested. Degree of anisotropy and fractal dimension do not show detectable changes in effective conductivity. Conclusions: These results provided some useful findings for simulation purposes. First, a higher value for the electrical conductivity of bone marrow has to be used in order to obtain similar values to those of experimental published data. Second, anisotropy is not detectable with conductivity measurements for small trabecular samples (5 mm cube). Finally, the simulations presented here showed relatively good fitting of the Bruggeman mixture model, which would potentially account for the free water content and could rescale the model for whole-bone electrical simulations.
Fil: Cervantes, Maria Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Basiuk, Lucas Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: González Suárez, Ana. Universidad de Valencia; España
Fil: Carlevaro, Carlos Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Irastorza, Ramiro Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Materia
Computer model
trabecular bone
Electrical conductivity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/230135

id CONICETDig_94e25b0b663f1056eb006f41dfe5b621
oai_identifier_str oai:ri.conicet.gov.ar:11336/230135
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Low-Frequency Electrical Conductivity of Trabecular Bone: Insights from In Silico ModelingCervantes, Maria JoseBasiuk, Lucas OsvaldoGonzález Suárez, AnaCarlevaro, Carlos ManuelIrastorza, Ramiro MiguelComputer modeltrabecular boneElectrical conductivityhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Background: The electrical conductivity of trabecular bone at 100 kHz has recently been reported as a good predictor of bone volume fraction. However, quantifying its relationship with free water (or physiological solution) content and the conductivities of its constituents is still difficult. Methods: In this contribution, in silico models inspired by microCT images of trabecular bovine samples were used to build realistic geometries. The finite element method was applied to solve the electrical problem and to robustly fit the conductivity of the constituents to the literature data. The obtained effective electrical conductivity was compared with the Bruggeman three-medium mixture model using a physiological solution, bone marrow and a bone matrix. Results: The values for the physiological solution plus bone marrow (together as one material) and the bone matrix that best captured the bone volume fraction in the two-medium finite element model were + = 298.4 mS/m and = 21.0 mS/m, respectively. Additionally, relatively good results were obtained with the three-medium Bruggeman mixture model, with = 103 mS/m, = 21.0 mS/m and = 1200 mS/m. Simple linear relationships between the proportions of constituents depending on bone volume fraction were tested. Degree of anisotropy and fractal dimension do not show detectable changes in effective conductivity. Conclusions: These results provided some useful findings for simulation purposes. First, a higher value for the electrical conductivity of bone marrow has to be used in order to obtain similar values to those of experimental published data. Second, anisotropy is not detectable with conductivity measurements for small trabecular samples (5 mm cube). Finally, the simulations presented here showed relatively good fitting of the Bruggeman mixture model, which would potentially account for the free water content and could rescale the model for whole-bone electrical simulations.Fil: Cervantes, Maria Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Basiuk, Lucas Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: González Suárez, Ana. Universidad de Valencia; EspañaFil: Carlevaro, Carlos Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Irastorza, Ramiro Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaMDPI2023-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/230135Cervantes, Maria Jose; Basiuk, Lucas Osvaldo; González Suárez, Ana; Carlevaro, Carlos Manuel; Irastorza, Ramiro Miguel; Low-Frequency Electrical Conductivity of Trabecular Bone: Insights from In Silico Modeling; MDPI; Mathematics; 11; 19; 9-2023; 1-142227-7390CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2227-7390/11/19/4038info:eu-repo/semantics/altIdentifier/doi/10.3390/math11194038info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:07Zoai:ri.conicet.gov.ar:11336/230135instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:07.876CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Low-Frequency Electrical Conductivity of Trabecular Bone: Insights from In Silico Modeling
title Low-Frequency Electrical Conductivity of Trabecular Bone: Insights from In Silico Modeling
spellingShingle Low-Frequency Electrical Conductivity of Trabecular Bone: Insights from In Silico Modeling
Cervantes, Maria Jose
Computer model
trabecular bone
Electrical conductivity
title_short Low-Frequency Electrical Conductivity of Trabecular Bone: Insights from In Silico Modeling
title_full Low-Frequency Electrical Conductivity of Trabecular Bone: Insights from In Silico Modeling
title_fullStr Low-Frequency Electrical Conductivity of Trabecular Bone: Insights from In Silico Modeling
title_full_unstemmed Low-Frequency Electrical Conductivity of Trabecular Bone: Insights from In Silico Modeling
title_sort Low-Frequency Electrical Conductivity of Trabecular Bone: Insights from In Silico Modeling
dc.creator.none.fl_str_mv Cervantes, Maria Jose
Basiuk, Lucas Osvaldo
González Suárez, Ana
Carlevaro, Carlos Manuel
Irastorza, Ramiro Miguel
author Cervantes, Maria Jose
author_facet Cervantes, Maria Jose
Basiuk, Lucas Osvaldo
González Suárez, Ana
Carlevaro, Carlos Manuel
Irastorza, Ramiro Miguel
author_role author
author2 Basiuk, Lucas Osvaldo
González Suárez, Ana
Carlevaro, Carlos Manuel
Irastorza, Ramiro Miguel
author2_role author
author
author
author
dc.subject.none.fl_str_mv Computer model
trabecular bone
Electrical conductivity
topic Computer model
trabecular bone
Electrical conductivity
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Background: The electrical conductivity of trabecular bone at 100 kHz has recently been reported as a good predictor of bone volume fraction. However, quantifying its relationship with free water (or physiological solution) content and the conductivities of its constituents is still difficult. Methods: In this contribution, in silico models inspired by microCT images of trabecular bovine samples were used to build realistic geometries. The finite element method was applied to solve the electrical problem and to robustly fit the conductivity of the constituents to the literature data. The obtained effective electrical conductivity was compared with the Bruggeman three-medium mixture model using a physiological solution, bone marrow and a bone matrix. Results: The values for the physiological solution plus bone marrow (together as one material) and the bone matrix that best captured the bone volume fraction in the two-medium finite element model were + = 298.4 mS/m and = 21.0 mS/m, respectively. Additionally, relatively good results were obtained with the three-medium Bruggeman mixture model, with = 103 mS/m, = 21.0 mS/m and = 1200 mS/m. Simple linear relationships between the proportions of constituents depending on bone volume fraction were tested. Degree of anisotropy and fractal dimension do not show detectable changes in effective conductivity. Conclusions: These results provided some useful findings for simulation purposes. First, a higher value for the electrical conductivity of bone marrow has to be used in order to obtain similar values to those of experimental published data. Second, anisotropy is not detectable with conductivity measurements for small trabecular samples (5 mm cube). Finally, the simulations presented here showed relatively good fitting of the Bruggeman mixture model, which would potentially account for the free water content and could rescale the model for whole-bone electrical simulations.
Fil: Cervantes, Maria Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Basiuk, Lucas Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: González Suárez, Ana. Universidad de Valencia; España
Fil: Carlevaro, Carlos Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Irastorza, Ramiro Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
description Background: The electrical conductivity of trabecular bone at 100 kHz has recently been reported as a good predictor of bone volume fraction. However, quantifying its relationship with free water (or physiological solution) content and the conductivities of its constituents is still difficult. Methods: In this contribution, in silico models inspired by microCT images of trabecular bovine samples were used to build realistic geometries. The finite element method was applied to solve the electrical problem and to robustly fit the conductivity of the constituents to the literature data. The obtained effective electrical conductivity was compared with the Bruggeman three-medium mixture model using a physiological solution, bone marrow and a bone matrix. Results: The values for the physiological solution plus bone marrow (together as one material) and the bone matrix that best captured the bone volume fraction in the two-medium finite element model were + = 298.4 mS/m and = 21.0 mS/m, respectively. Additionally, relatively good results were obtained with the three-medium Bruggeman mixture model, with = 103 mS/m, = 21.0 mS/m and = 1200 mS/m. Simple linear relationships between the proportions of constituents depending on bone volume fraction were tested. Degree of anisotropy and fractal dimension do not show detectable changes in effective conductivity. Conclusions: These results provided some useful findings for simulation purposes. First, a higher value for the electrical conductivity of bone marrow has to be used in order to obtain similar values to those of experimental published data. Second, anisotropy is not detectable with conductivity measurements for small trabecular samples (5 mm cube). Finally, the simulations presented here showed relatively good fitting of the Bruggeman mixture model, which would potentially account for the free water content and could rescale the model for whole-bone electrical simulations.
publishDate 2023
dc.date.none.fl_str_mv 2023-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/230135
Cervantes, Maria Jose; Basiuk, Lucas Osvaldo; González Suárez, Ana; Carlevaro, Carlos Manuel; Irastorza, Ramiro Miguel; Low-Frequency Electrical Conductivity of Trabecular Bone: Insights from In Silico Modeling; MDPI; Mathematics; 11; 19; 9-2023; 1-14
2227-7390
CONICET Digital
CONICET
url http://hdl.handle.net/11336/230135
identifier_str_mv Cervantes, Maria Jose; Basiuk, Lucas Osvaldo; González Suárez, Ana; Carlevaro, Carlos Manuel; Irastorza, Ramiro Miguel; Low-Frequency Electrical Conductivity of Trabecular Bone: Insights from In Silico Modeling; MDPI; Mathematics; 11; 19; 9-2023; 1-14
2227-7390
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2227-7390/11/19/4038
info:eu-repo/semantics/altIdentifier/doi/10.3390/math11194038
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269203144376320
score 13.13397