Low-Frequency Electrical Conductivity of Trabecular Bone: Insights from In Silico Modeling
- Autores
- Cervantes, Maria Jose; Basiuk, Lucas Osvaldo; González Suárez, Ana; Carlevaro, Carlos Manuel; Irastorza, Ramiro Miguel
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background: The electrical conductivity of trabecular bone at 100 kHz has recently been reported as a good predictor of bone volume fraction. However, quantifying its relationship with free water (or physiological solution) content and the conductivities of its constituents is still difficult. Methods: In this contribution, in silico models inspired by microCT images of trabecular bovine samples were used to build realistic geometries. The finite element method was applied to solve the electrical problem and to robustly fit the conductivity of the constituents to the literature data. The obtained effective electrical conductivity was compared with the Bruggeman three-medium mixture model using a physiological solution, bone marrow and a bone matrix. Results: The values for the physiological solution plus bone marrow (together as one material) and the bone matrix that best captured the bone volume fraction in the two-medium finite element model were + = 298.4 mS/m and = 21.0 mS/m, respectively. Additionally, relatively good results were obtained with the three-medium Bruggeman mixture model, with = 103 mS/m, = 21.0 mS/m and = 1200 mS/m. Simple linear relationships between the proportions of constituents depending on bone volume fraction were tested. Degree of anisotropy and fractal dimension do not show detectable changes in effective conductivity. Conclusions: These results provided some useful findings for simulation purposes. First, a higher value for the electrical conductivity of bone marrow has to be used in order to obtain similar values to those of experimental published data. Second, anisotropy is not detectable with conductivity measurements for small trabecular samples (5 mm cube). Finally, the simulations presented here showed relatively good fitting of the Bruggeman mixture model, which would potentially account for the free water content and could rescale the model for whole-bone electrical simulations.
Fil: Cervantes, Maria Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Basiuk, Lucas Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: González Suárez, Ana. Universidad de Valencia; España
Fil: Carlevaro, Carlos Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Irastorza, Ramiro Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina - Materia
-
Computer model
trabecular bone
Electrical conductivity - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/230135
Ver los metadatos del registro completo
id |
CONICETDig_94e25b0b663f1056eb006f41dfe5b621 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/230135 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Low-Frequency Electrical Conductivity of Trabecular Bone: Insights from In Silico ModelingCervantes, Maria JoseBasiuk, Lucas OsvaldoGonzález Suárez, AnaCarlevaro, Carlos ManuelIrastorza, Ramiro MiguelComputer modeltrabecular boneElectrical conductivityhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Background: The electrical conductivity of trabecular bone at 100 kHz has recently been reported as a good predictor of bone volume fraction. However, quantifying its relationship with free water (or physiological solution) content and the conductivities of its constituents is still difficult. Methods: In this contribution, in silico models inspired by microCT images of trabecular bovine samples were used to build realistic geometries. The finite element method was applied to solve the electrical problem and to robustly fit the conductivity of the constituents to the literature data. The obtained effective electrical conductivity was compared with the Bruggeman three-medium mixture model using a physiological solution, bone marrow and a bone matrix. Results: The values for the physiological solution plus bone marrow (together as one material) and the bone matrix that best captured the bone volume fraction in the two-medium finite element model were + = 298.4 mS/m and = 21.0 mS/m, respectively. Additionally, relatively good results were obtained with the three-medium Bruggeman mixture model, with = 103 mS/m, = 21.0 mS/m and = 1200 mS/m. Simple linear relationships between the proportions of constituents depending on bone volume fraction were tested. Degree of anisotropy and fractal dimension do not show detectable changes in effective conductivity. Conclusions: These results provided some useful findings for simulation purposes. First, a higher value for the electrical conductivity of bone marrow has to be used in order to obtain similar values to those of experimental published data. Second, anisotropy is not detectable with conductivity measurements for small trabecular samples (5 mm cube). Finally, the simulations presented here showed relatively good fitting of the Bruggeman mixture model, which would potentially account for the free water content and could rescale the model for whole-bone electrical simulations.Fil: Cervantes, Maria Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Basiuk, Lucas Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: González Suárez, Ana. Universidad de Valencia; EspañaFil: Carlevaro, Carlos Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Irastorza, Ramiro Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaMDPI2023-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/230135Cervantes, Maria Jose; Basiuk, Lucas Osvaldo; González Suárez, Ana; Carlevaro, Carlos Manuel; Irastorza, Ramiro Miguel; Low-Frequency Electrical Conductivity of Trabecular Bone: Insights from In Silico Modeling; MDPI; Mathematics; 11; 19; 9-2023; 1-142227-7390CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2227-7390/11/19/4038info:eu-repo/semantics/altIdentifier/doi/10.3390/math11194038info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:07Zoai:ri.conicet.gov.ar:11336/230135instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:07.876CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Low-Frequency Electrical Conductivity of Trabecular Bone: Insights from In Silico Modeling |
title |
Low-Frequency Electrical Conductivity of Trabecular Bone: Insights from In Silico Modeling |
spellingShingle |
Low-Frequency Electrical Conductivity of Trabecular Bone: Insights from In Silico Modeling Cervantes, Maria Jose Computer model trabecular bone Electrical conductivity |
title_short |
Low-Frequency Electrical Conductivity of Trabecular Bone: Insights from In Silico Modeling |
title_full |
Low-Frequency Electrical Conductivity of Trabecular Bone: Insights from In Silico Modeling |
title_fullStr |
Low-Frequency Electrical Conductivity of Trabecular Bone: Insights from In Silico Modeling |
title_full_unstemmed |
Low-Frequency Electrical Conductivity of Trabecular Bone: Insights from In Silico Modeling |
title_sort |
Low-Frequency Electrical Conductivity of Trabecular Bone: Insights from In Silico Modeling |
dc.creator.none.fl_str_mv |
Cervantes, Maria Jose Basiuk, Lucas Osvaldo González Suárez, Ana Carlevaro, Carlos Manuel Irastorza, Ramiro Miguel |
author |
Cervantes, Maria Jose |
author_facet |
Cervantes, Maria Jose Basiuk, Lucas Osvaldo González Suárez, Ana Carlevaro, Carlos Manuel Irastorza, Ramiro Miguel |
author_role |
author |
author2 |
Basiuk, Lucas Osvaldo González Suárez, Ana Carlevaro, Carlos Manuel Irastorza, Ramiro Miguel |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Computer model trabecular bone Electrical conductivity |
topic |
Computer model trabecular bone Electrical conductivity |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Background: The electrical conductivity of trabecular bone at 100 kHz has recently been reported as a good predictor of bone volume fraction. However, quantifying its relationship with free water (or physiological solution) content and the conductivities of its constituents is still difficult. Methods: In this contribution, in silico models inspired by microCT images of trabecular bovine samples were used to build realistic geometries. The finite element method was applied to solve the electrical problem and to robustly fit the conductivity of the constituents to the literature data. The obtained effective electrical conductivity was compared with the Bruggeman three-medium mixture model using a physiological solution, bone marrow and a bone matrix. Results: The values for the physiological solution plus bone marrow (together as one material) and the bone matrix that best captured the bone volume fraction in the two-medium finite element model were + = 298.4 mS/m and = 21.0 mS/m, respectively. Additionally, relatively good results were obtained with the three-medium Bruggeman mixture model, with = 103 mS/m, = 21.0 mS/m and = 1200 mS/m. Simple linear relationships between the proportions of constituents depending on bone volume fraction were tested. Degree of anisotropy and fractal dimension do not show detectable changes in effective conductivity. Conclusions: These results provided some useful findings for simulation purposes. First, a higher value for the electrical conductivity of bone marrow has to be used in order to obtain similar values to those of experimental published data. Second, anisotropy is not detectable with conductivity measurements for small trabecular samples (5 mm cube). Finally, the simulations presented here showed relatively good fitting of the Bruggeman mixture model, which would potentially account for the free water content and could rescale the model for whole-bone electrical simulations. Fil: Cervantes, Maria Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina Fil: Basiuk, Lucas Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina Fil: González Suárez, Ana. Universidad de Valencia; España Fil: Carlevaro, Carlos Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina Fil: Irastorza, Ramiro Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina |
description |
Background: The electrical conductivity of trabecular bone at 100 kHz has recently been reported as a good predictor of bone volume fraction. However, quantifying its relationship with free water (or physiological solution) content and the conductivities of its constituents is still difficult. Methods: In this contribution, in silico models inspired by microCT images of trabecular bovine samples were used to build realistic geometries. The finite element method was applied to solve the electrical problem and to robustly fit the conductivity of the constituents to the literature data. The obtained effective electrical conductivity was compared with the Bruggeman three-medium mixture model using a physiological solution, bone marrow and a bone matrix. Results: The values for the physiological solution plus bone marrow (together as one material) and the bone matrix that best captured the bone volume fraction in the two-medium finite element model were + = 298.4 mS/m and = 21.0 mS/m, respectively. Additionally, relatively good results were obtained with the three-medium Bruggeman mixture model, with = 103 mS/m, = 21.0 mS/m and = 1200 mS/m. Simple linear relationships between the proportions of constituents depending on bone volume fraction were tested. Degree of anisotropy and fractal dimension do not show detectable changes in effective conductivity. Conclusions: These results provided some useful findings for simulation purposes. First, a higher value for the electrical conductivity of bone marrow has to be used in order to obtain similar values to those of experimental published data. Second, anisotropy is not detectable with conductivity measurements for small trabecular samples (5 mm cube). Finally, the simulations presented here showed relatively good fitting of the Bruggeman mixture model, which would potentially account for the free water content and could rescale the model for whole-bone electrical simulations. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/230135 Cervantes, Maria Jose; Basiuk, Lucas Osvaldo; González Suárez, Ana; Carlevaro, Carlos Manuel; Irastorza, Ramiro Miguel; Low-Frequency Electrical Conductivity of Trabecular Bone: Insights from In Silico Modeling; MDPI; Mathematics; 11; 19; 9-2023; 1-14 2227-7390 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/230135 |
identifier_str_mv |
Cervantes, Maria Jose; Basiuk, Lucas Osvaldo; González Suárez, Ana; Carlevaro, Carlos Manuel; Irastorza, Ramiro Miguel; Low-Frequency Electrical Conductivity of Trabecular Bone: Insights from In Silico Modeling; MDPI; Mathematics; 11; 19; 9-2023; 1-14 2227-7390 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2227-7390/11/19/4038 info:eu-repo/semantics/altIdentifier/doi/10.3390/math11194038 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269203144376320 |
score |
13.13397 |