Skull Modeling Effects in Conductivity Estimates Using Parametric Electrical Impedance Tomography

Autores
Fernández Corazza, Mariano; Turovets, Serguei; Luu, Phan; Price, Nick; Muravchik, Carlos Horacio; Tucker, Don
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión aceptada
Descripción
Objective: To estimate scalp, skull, compact bone, and marrow bone electrical conductivity values based on electrical impedance tomography (EIT) measurements, and to determine the influence of skull modeling details on the estimates. Methods: We collected EIT data with 62 current injection pairs and built five 6–8 million finite element (FE) head models with different grades of skull simplifications for four subjects, including three whose head models serve as Atlases in the scientific literature and in commercial equipment (Colin27 and EGI’s Geosource atlases). We estimated electrical conductivity of the scalp, skull, marrow bone, and compact bone tissues for each current injection pair, each model, and each subject. Results: Closure of skull holes in FE models, use of simplified four-layer boundary element method-like models, and neglecting the CSF layer produce an overestimation of the skull conductivity of 10%, 10%–20%, and 20%–30%, respectively (accumulated overestimation of 50%–70%). The average extracted conductivities are 288 ± 53 (the scalp), 4.3 ± 0.08 (the compact bone), and 5.5 ± 1.25 (the whole skull) mS/m. The marrow bone estimates showed large dispersion. Conclusion: Present EIT estimates for the skull conductivity are lower than typical literature reference values, but previous in vivo EIT results are likely overestimated due to the use of simpler models. Significance: Typical literature values of 7–10 mS/m for skull conductivity should be replaced by the present estimated values when using detailed skull head models. We also provide subject specific conductivity estimates for widely used Atlas head models.
Materia
Ingeniería Eléctrica y Electrónica
electrical impedance tomography, skull electrical conductivity, bioimpedance, biomedical signal processing, electroencephalography
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
CIC Digital (CICBA)
Institución
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
OAI Identificador
oai:digital.cic.gba.gob.ar:11746/8429

id CICBA_0db6ac3553fd3b287c2907b4c4ab5ee1
oai_identifier_str oai:digital.cic.gba.gob.ar:11746/8429
network_acronym_str CICBA
repository_id_str 9441
network_name_str CIC Digital (CICBA)
spelling Skull Modeling Effects in Conductivity Estimates Using Parametric Electrical Impedance TomographyFernández Corazza, MarianoTurovets, SergueiLuu, PhanPrice, NickMuravchik, Carlos HoracioTucker, DonIngeniería Eléctrica y Electrónicaelectrical impedance tomography, skull electrical conductivity, bioimpedance, biomedical signal processing, electroencephalographyObjective: To estimate scalp, skull, compact bone, and marrow bone electrical conductivity values based on electrical impedance tomography (EIT) measurements, and to determine the influence of skull modeling details on the estimates. Methods: We collected EIT data with 62 current injection pairs and built five 6–8 million finite element (FE) head models with different grades of skull simplifications for four subjects, including three whose head models serve as Atlases in the scientific literature and in commercial equipment (Colin27 and EGI’s Geosource atlases). We estimated electrical conductivity of the scalp, skull, marrow bone, and compact bone tissues for each current injection pair, each model, and each subject. Results: Closure of skull holes in FE models, use of simplified four-layer boundary element method-like models, and neglecting the CSF layer produce an overestimation of the skull conductivity of 10%, 10%–20%, and 20%–30%, respectively (accumulated overestimation of 50%–70%). The average extracted conductivities are 288 ± 53 (the scalp), 4.3 ± 0.08 (the compact bone), and 5.5 ± 1.25 (the whole skull) mS/m. The marrow bone estimates showed large dispersion. Conclusion: Present EIT estimates for the skull conductivity are lower than typical literature reference values, but previous in vivo EIT results are likely overestimated due to the use of simpler models. Significance: Typical literature values of 7–10 mS/m for skull conductivity should be replaced by the present estimated values when using detailed skull head models. We also provide subject specific conductivity estimates for widely used Atlas head models.2017info:eu-repo/semantics/articleinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/8429enginfo:eu-repo/semantics/altIdentifier/doi/10.1109/TBME.2017.2777143info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-11T10:18:05Zoai:digital.cic.gba.gob.ar:11746/8429Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-11 10:18:05.572CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse
dc.title.none.fl_str_mv Skull Modeling Effects in Conductivity Estimates Using Parametric Electrical Impedance Tomography
title Skull Modeling Effects in Conductivity Estimates Using Parametric Electrical Impedance Tomography
spellingShingle Skull Modeling Effects in Conductivity Estimates Using Parametric Electrical Impedance Tomography
Fernández Corazza, Mariano
Ingeniería Eléctrica y Electrónica
electrical impedance tomography, skull electrical conductivity, bioimpedance, biomedical signal processing, electroencephalography
title_short Skull Modeling Effects in Conductivity Estimates Using Parametric Electrical Impedance Tomography
title_full Skull Modeling Effects in Conductivity Estimates Using Parametric Electrical Impedance Tomography
title_fullStr Skull Modeling Effects in Conductivity Estimates Using Parametric Electrical Impedance Tomography
title_full_unstemmed Skull Modeling Effects in Conductivity Estimates Using Parametric Electrical Impedance Tomography
title_sort Skull Modeling Effects in Conductivity Estimates Using Parametric Electrical Impedance Tomography
dc.creator.none.fl_str_mv Fernández Corazza, Mariano
Turovets, Serguei
Luu, Phan
Price, Nick
Muravchik, Carlos Horacio
Tucker, Don
author Fernández Corazza, Mariano
author_facet Fernández Corazza, Mariano
Turovets, Serguei
Luu, Phan
Price, Nick
Muravchik, Carlos Horacio
Tucker, Don
author_role author
author2 Turovets, Serguei
Luu, Phan
Price, Nick
Muravchik, Carlos Horacio
Tucker, Don
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Ingeniería Eléctrica y Electrónica
electrical impedance tomography, skull electrical conductivity, bioimpedance, biomedical signal processing, electroencephalography
topic Ingeniería Eléctrica y Electrónica
electrical impedance tomography, skull electrical conductivity, bioimpedance, biomedical signal processing, electroencephalography
dc.description.none.fl_txt_mv Objective: To estimate scalp, skull, compact bone, and marrow bone electrical conductivity values based on electrical impedance tomography (EIT) measurements, and to determine the influence of skull modeling details on the estimates. Methods: We collected EIT data with 62 current injection pairs and built five 6–8 million finite element (FE) head models with different grades of skull simplifications for four subjects, including three whose head models serve as Atlases in the scientific literature and in commercial equipment (Colin27 and EGI’s Geosource atlases). We estimated electrical conductivity of the scalp, skull, marrow bone, and compact bone tissues for each current injection pair, each model, and each subject. Results: Closure of skull holes in FE models, use of simplified four-layer boundary element method-like models, and neglecting the CSF layer produce an overestimation of the skull conductivity of 10%, 10%–20%, and 20%–30%, respectively (accumulated overestimation of 50%–70%). The average extracted conductivities are 288 ± 53 (the scalp), 4.3 ± 0.08 (the compact bone), and 5.5 ± 1.25 (the whole skull) mS/m. The marrow bone estimates showed large dispersion. Conclusion: Present EIT estimates for the skull conductivity are lower than typical literature reference values, but previous in vivo EIT results are likely overestimated due to the use of simpler models. Significance: Typical literature values of 7–10 mS/m for skull conductivity should be replaced by the present estimated values when using detailed skull head models. We also provide subject specific conductivity estimates for widely used Atlas head models.
description Objective: To estimate scalp, skull, compact bone, and marrow bone electrical conductivity values based on electrical impedance tomography (EIT) measurements, and to determine the influence of skull modeling details on the estimates. Methods: We collected EIT data with 62 current injection pairs and built five 6–8 million finite element (FE) head models with different grades of skull simplifications for four subjects, including three whose head models serve as Atlases in the scientific literature and in commercial equipment (Colin27 and EGI’s Geosource atlases). We estimated electrical conductivity of the scalp, skull, marrow bone, and compact bone tissues for each current injection pair, each model, and each subject. Results: Closure of skull holes in FE models, use of simplified four-layer boundary element method-like models, and neglecting the CSF layer produce an overestimation of the skull conductivity of 10%, 10%–20%, and 20%–30%, respectively (accumulated overestimation of 50%–70%). The average extracted conductivities are 288 ± 53 (the scalp), 4.3 ± 0.08 (the compact bone), and 5.5 ± 1.25 (the whole skull) mS/m. The marrow bone estimates showed large dispersion. Conclusion: Present EIT estimates for the skull conductivity are lower than typical literature reference values, but previous in vivo EIT results are likely overestimated due to the use of simpler models. Significance: Typical literature values of 7–10 mS/m for skull conductivity should be replaced by the present estimated values when using detailed skull head models. We also provide subject specific conductivity estimates for widely used Atlas head models.
publishDate 2017
dc.date.none.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/acceptedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str acceptedVersion
dc.identifier.none.fl_str_mv https://digital.cic.gba.gob.ar/handle/11746/8429
url https://digital.cic.gba.gob.ar/handle/11746/8429
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1109/TBME.2017.2777143
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:CIC Digital (CICBA)
instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron:CICBA
reponame_str CIC Digital (CICBA)
collection CIC Digital (CICBA)
instname_str Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron_str CICBA
institution CICBA
repository.name.fl_str_mv CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
repository.mail.fl_str_mv marisa.degiusti@sedici.unlp.edu.ar
_version_ 1842974741791506432
score 12.708384