Skull modeling effects in conductivity estimates using parametric electrical impedance tomography

Autores
Fernandez Corazza, Mariano; Turovets, Sergei; Luu, Phan; Price, Nick; Muravchik, Carlos Horacio; Tucker, Don
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Objective: To estimate the scalp, skull, compact bone and marrow bone electrical conductivity values based on Electrical Impedance Tomography (EIT) measurements, and to determine the influence of the skull modeling details on the estimates. Methods: We collected EIT data with 62 current injection pairs and built five 6-8 million finite element (FE) head models with different grades of skull simplifications for four subjects, including three whose head models serve as Atlas in the scientific literature and in commercial equipment (Colin27 and EGI's Geosource atlases). We estimated the electrical conductivity of the scalp, skull, marrow bone and compact bone tissues for each current injection pair, each model, and each subject. Results: patching the skull holes in FE models, using four-layer Boundary Element Method-like models, and neglecting the CSF layer produce an overestimation of the skull conductivity of 10%, 10-20%, and 20-30% respectively (accumulated overestimation of 50-70%). The average extracted conductivities are: 288±53 (the scalp), 4.3±0.08 (the compact bone), and 5.5±1.25 (the whole skull) mS/m. The marrow bone estimates showed large dispersion. Conclusion: our EIT estimates for the skull conductivity are lower than typical literature reference values, but the previous in-vivo EIT results are likely overestimated due to the use of simpler models. Significance: the typical literature values of 7-10mS/m for the skull conductivity should be replaced by our new estimates when using detailed skull head models. We also provide subject specific conductivity estimates for widely used Atlas head models.
Fil: Fernandez Corazza, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Electrotecnia; Argentina
Fil: Turovets, Sergei. University of Oregon; Estados Unidos
Fil: Luu, Phan. University of Oregon; Estados Unidos
Fil: Price, Nick. Electrical Geodesics Inc.; Estados Unidos
Fil: Muravchik, Carlos Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Electrotecnia; Argentina
Fil: Tucker, Don. University of Oregon; Estados Unidos
Materia
Bioimpedance
Biomedical Signal Processing
Electrical Impedance Tomography
Electroencephalography
Skull Electrical Conductivity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/49923

id CONICETDig_bd4e80db254db45b03de811dc5727d37
oai_identifier_str oai:ri.conicet.gov.ar:11336/49923
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Skull modeling effects in conductivity estimates using parametric electrical impedance tomographyFernandez Corazza, MarianoTurovets, SergeiLuu, PhanPrice, NickMuravchik, Carlos HoracioTucker, DonBioimpedanceBiomedical Signal ProcessingElectrical Impedance TomographyElectroencephalographySkull Electrical Conductivityhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Objective: To estimate the scalp, skull, compact bone and marrow bone electrical conductivity values based on Electrical Impedance Tomography (EIT) measurements, and to determine the influence of the skull modeling details on the estimates. Methods: We collected EIT data with 62 current injection pairs and built five 6-8 million finite element (FE) head models with different grades of skull simplifications for four subjects, including three whose head models serve as Atlas in the scientific literature and in commercial equipment (Colin27 and EGI's Geosource atlases). We estimated the electrical conductivity of the scalp, skull, marrow bone and compact bone tissues for each current injection pair, each model, and each subject. Results: patching the skull holes in FE models, using four-layer Boundary Element Method-like models, and neglecting the CSF layer produce an overestimation of the skull conductivity of 10%, 10-20%, and 20-30% respectively (accumulated overestimation of 50-70%). The average extracted conductivities are: 288±53 (the scalp), 4.3±0.08 (the compact bone), and 5.5±1.25 (the whole skull) mS/m. The marrow bone estimates showed large dispersion. Conclusion: our EIT estimates for the skull conductivity are lower than typical literature reference values, but the previous in-vivo EIT results are likely overestimated due to the use of simpler models. Significance: the typical literature values of 7-10mS/m for the skull conductivity should be replaced by our new estimates when using detailed skull head models. We also provide subject specific conductivity estimates for widely used Atlas head models.Fil: Fernandez Corazza, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Electrotecnia; ArgentinaFil: Turovets, Sergei. University of Oregon; Estados UnidosFil: Luu, Phan. University of Oregon; Estados UnidosFil: Price, Nick. Electrical Geodesics Inc.; Estados UnidosFil: Muravchik, Carlos Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Electrotecnia; ArgentinaFil: Tucker, Don. University of Oregon; Estados UnidosInstitute of Electrical and Electronics Engineers2017-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/49923Fernandez Corazza, Mariano; Turovets, Sergei; Luu, Phan; Price, Nick; Muravchik, Carlos Horacio; et al.; Skull modeling effects in conductivity estimates using parametric electrical impedance tomography; Institute of Electrical and Electronics Engineers; Ieee Transactions On Bio-medical Engineering; 11-2017; 1-140018-92941558-2531CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1109/TBME.2017.2777143info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8119547/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:03Zoai:ri.conicet.gov.ar:11336/49923instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:03.502CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Skull modeling effects in conductivity estimates using parametric electrical impedance tomography
title Skull modeling effects in conductivity estimates using parametric electrical impedance tomography
spellingShingle Skull modeling effects in conductivity estimates using parametric electrical impedance tomography
Fernandez Corazza, Mariano
Bioimpedance
Biomedical Signal Processing
Electrical Impedance Tomography
Electroencephalography
Skull Electrical Conductivity
title_short Skull modeling effects in conductivity estimates using parametric electrical impedance tomography
title_full Skull modeling effects in conductivity estimates using parametric electrical impedance tomography
title_fullStr Skull modeling effects in conductivity estimates using parametric electrical impedance tomography
title_full_unstemmed Skull modeling effects in conductivity estimates using parametric electrical impedance tomography
title_sort Skull modeling effects in conductivity estimates using parametric electrical impedance tomography
dc.creator.none.fl_str_mv Fernandez Corazza, Mariano
Turovets, Sergei
Luu, Phan
Price, Nick
Muravchik, Carlos Horacio
Tucker, Don
author Fernandez Corazza, Mariano
author_facet Fernandez Corazza, Mariano
Turovets, Sergei
Luu, Phan
Price, Nick
Muravchik, Carlos Horacio
Tucker, Don
author_role author
author2 Turovets, Sergei
Luu, Phan
Price, Nick
Muravchik, Carlos Horacio
Tucker, Don
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Bioimpedance
Biomedical Signal Processing
Electrical Impedance Tomography
Electroencephalography
Skull Electrical Conductivity
topic Bioimpedance
Biomedical Signal Processing
Electrical Impedance Tomography
Electroencephalography
Skull Electrical Conductivity
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Objective: To estimate the scalp, skull, compact bone and marrow bone electrical conductivity values based on Electrical Impedance Tomography (EIT) measurements, and to determine the influence of the skull modeling details on the estimates. Methods: We collected EIT data with 62 current injection pairs and built five 6-8 million finite element (FE) head models with different grades of skull simplifications for four subjects, including three whose head models serve as Atlas in the scientific literature and in commercial equipment (Colin27 and EGI's Geosource atlases). We estimated the electrical conductivity of the scalp, skull, marrow bone and compact bone tissues for each current injection pair, each model, and each subject. Results: patching the skull holes in FE models, using four-layer Boundary Element Method-like models, and neglecting the CSF layer produce an overestimation of the skull conductivity of 10%, 10-20%, and 20-30% respectively (accumulated overestimation of 50-70%). The average extracted conductivities are: 288±53 (the scalp), 4.3±0.08 (the compact bone), and 5.5±1.25 (the whole skull) mS/m. The marrow bone estimates showed large dispersion. Conclusion: our EIT estimates for the skull conductivity are lower than typical literature reference values, but the previous in-vivo EIT results are likely overestimated due to the use of simpler models. Significance: the typical literature values of 7-10mS/m for the skull conductivity should be replaced by our new estimates when using detailed skull head models. We also provide subject specific conductivity estimates for widely used Atlas head models.
Fil: Fernandez Corazza, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Electrotecnia; Argentina
Fil: Turovets, Sergei. University of Oregon; Estados Unidos
Fil: Luu, Phan. University of Oregon; Estados Unidos
Fil: Price, Nick. Electrical Geodesics Inc.; Estados Unidos
Fil: Muravchik, Carlos Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Electrotecnia; Argentina
Fil: Tucker, Don. University of Oregon; Estados Unidos
description Objective: To estimate the scalp, skull, compact bone and marrow bone electrical conductivity values based on Electrical Impedance Tomography (EIT) measurements, and to determine the influence of the skull modeling details on the estimates. Methods: We collected EIT data with 62 current injection pairs and built five 6-8 million finite element (FE) head models with different grades of skull simplifications for four subjects, including three whose head models serve as Atlas in the scientific literature and in commercial equipment (Colin27 and EGI's Geosource atlases). We estimated the electrical conductivity of the scalp, skull, marrow bone and compact bone tissues for each current injection pair, each model, and each subject. Results: patching the skull holes in FE models, using four-layer Boundary Element Method-like models, and neglecting the CSF layer produce an overestimation of the skull conductivity of 10%, 10-20%, and 20-30% respectively (accumulated overestimation of 50-70%). The average extracted conductivities are: 288±53 (the scalp), 4.3±0.08 (the compact bone), and 5.5±1.25 (the whole skull) mS/m. The marrow bone estimates showed large dispersion. Conclusion: our EIT estimates for the skull conductivity are lower than typical literature reference values, but the previous in-vivo EIT results are likely overestimated due to the use of simpler models. Significance: the typical literature values of 7-10mS/m for the skull conductivity should be replaced by our new estimates when using detailed skull head models. We also provide subject specific conductivity estimates for widely used Atlas head models.
publishDate 2017
dc.date.none.fl_str_mv 2017-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/49923
Fernandez Corazza, Mariano; Turovets, Sergei; Luu, Phan; Price, Nick; Muravchik, Carlos Horacio; et al.; Skull modeling effects in conductivity estimates using parametric electrical impedance tomography; Institute of Electrical and Electronics Engineers; Ieee Transactions On Bio-medical Engineering; 11-2017; 1-14
0018-9294
1558-2531
CONICET Digital
CONICET
url http://hdl.handle.net/11336/49923
identifier_str_mv Fernandez Corazza, Mariano; Turovets, Sergei; Luu, Phan; Price, Nick; Muravchik, Carlos Horacio; et al.; Skull modeling effects in conductivity estimates using parametric electrical impedance tomography; Institute of Electrical and Electronics Engineers; Ieee Transactions On Bio-medical Engineering; 11-2017; 1-14
0018-9294
1558-2531
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1109/TBME.2017.2777143
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8119547/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269197973848064
score 13.13397