Pressure and shear-induced amorphization of silicon
- Autores
- Zhao, S.; Kad, B.; Hahn, E. N.; Remington, Bruce A.; Wehrenberg, C. E.; Huntington, C. M.; Park, H. S.; Bringa, Eduardo Marcial; More, K. L.; Meyers, Marc A.
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Here we report that high-power, pulsed, laser-driven shock compression of monocrystalline silicon produces directional amorphization, revealed by high-resolution transmission electron microscopy and confirmed by molecular dynamics simulations. At the lowest energy level experiment, generating a pressure of ~4 GPa, silicon reacts elastically. At intermediate energy levels (P~11 and 22 GPa), amorphization is observed both at the surface and directionally, along planes making angles close to the maximum shear. At the highest laser energy level explored here, (Ppeak ~28 GPa), the recovered sample shows a nanocrystalline microstructure near the surface. This nanocrystalline structure forms by crystallization from the amorphous phase and is thought to be a post-shock phenomenon. Shear-induced lattice defects (stacking faults and twins) on crystallographic slip planes play a crucial role in the onset of amorphization. Molecular dynamics show that silicon behaves elastically until ~10 GPa and, at slightly higher pressures, partial dislocations and stacking faults are emitted from the surface. Driven by the high-amplitude stress pulse, these defects travel inwards along specific crystallographic orientations and intersect, leading to further defect creation, additional plastic work, and, at higher pressures, amorphous bands in intersecting patterns. The typical high-pressure solid-solid phase transitions of silicon are not observed whereas the high shear stresses are relaxed by localized dislocation motion/interactions and eventually by directional amorphization, which occurs below the critical hydrostatic pressure for melting of silicon in shock compression. It is therefore proposed that the combined effects of hydrostatic and shear stresses lead to directional amorphization.
Fil: Zhao, S.. University of California at San Diego; Estados Unidos
Fil: Kad, B.. University of California at San Diego; Estados Unidos
Fil: Hahn, E. N.. University of California at San Diego; Estados Unidos
Fil: Remington, Bruce A.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Wehrenberg, C. E.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Huntington, C. M.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Park, H. S.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: More, K. L.. No especifíca;
Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos - Materia
-
AMORPHIZATION
LASER SHOCK COMPRESSION
NANOCRYSTALLINE SILICON
SILICON - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/180234
Ver los metadatos del registro completo
id |
CONICETDig_93cc75b4542d74f8653f73aa80cabe24 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/180234 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Pressure and shear-induced amorphization of siliconZhao, S.Kad, B.Hahn, E. N.Remington, Bruce A.Wehrenberg, C. E.Huntington, C. M.Park, H. S.Bringa, Eduardo MarcialMore, K. L.Meyers, Marc A.AMORPHIZATIONLASER SHOCK COMPRESSIONNANOCRYSTALLINE SILICONSILICONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Here we report that high-power, pulsed, laser-driven shock compression of monocrystalline silicon produces directional amorphization, revealed by high-resolution transmission electron microscopy and confirmed by molecular dynamics simulations. At the lowest energy level experiment, generating a pressure of ~4 GPa, silicon reacts elastically. At intermediate energy levels (P~11 and 22 GPa), amorphization is observed both at the surface and directionally, along planes making angles close to the maximum shear. At the highest laser energy level explored here, (Ppeak ~28 GPa), the recovered sample shows a nanocrystalline microstructure near the surface. This nanocrystalline structure forms by crystallization from the amorphous phase and is thought to be a post-shock phenomenon. Shear-induced lattice defects (stacking faults and twins) on crystallographic slip planes play a crucial role in the onset of amorphization. Molecular dynamics show that silicon behaves elastically until ~10 GPa and, at slightly higher pressures, partial dislocations and stacking faults are emitted from the surface. Driven by the high-amplitude stress pulse, these defects travel inwards along specific crystallographic orientations and intersect, leading to further defect creation, additional plastic work, and, at higher pressures, amorphous bands in intersecting patterns. The typical high-pressure solid-solid phase transitions of silicon are not observed whereas the high shear stresses are relaxed by localized dislocation motion/interactions and eventually by directional amorphization, which occurs below the critical hydrostatic pressure for melting of silicon in shock compression. It is therefore proposed that the combined effects of hydrostatic and shear stresses lead to directional amorphization.Fil: Zhao, S.. University of California at San Diego; Estados UnidosFil: Kad, B.. University of California at San Diego; Estados UnidosFil: Hahn, E. N.. University of California at San Diego; Estados UnidosFil: Remington, Bruce A.. Lawrence Livermore National Laboratory; Estados UnidosFil: Wehrenberg, C. E.. Lawrence Livermore National Laboratory; Estados UnidosFil: Huntington, C. M.. Lawrence Livermore National Laboratory; Estados UnidosFil: Park, H. S.. Lawrence Livermore National Laboratory; Estados UnidosFil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: More, K. L.. No especifíca;Fil: Meyers, Marc A.. University of California at San Diego; Estados UnidosElsevier2015-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/180234Zhao, S.; Kad, B.; Hahn, E. N.; Remington, Bruce A.; Wehrenberg, C. E.; et al.; Pressure and shear-induced amorphization of silicon; Elsevier; Extreme Mechanics Letters; 5; 12-2015; 74-802352-4316CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.eml.2015.10.001info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:01:34Zoai:ri.conicet.gov.ar:11336/180234instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:01:34.784CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Pressure and shear-induced amorphization of silicon |
title |
Pressure and shear-induced amorphization of silicon |
spellingShingle |
Pressure and shear-induced amorphization of silicon Zhao, S. AMORPHIZATION LASER SHOCK COMPRESSION NANOCRYSTALLINE SILICON SILICON |
title_short |
Pressure and shear-induced amorphization of silicon |
title_full |
Pressure and shear-induced amorphization of silicon |
title_fullStr |
Pressure and shear-induced amorphization of silicon |
title_full_unstemmed |
Pressure and shear-induced amorphization of silicon |
title_sort |
Pressure and shear-induced amorphization of silicon |
dc.creator.none.fl_str_mv |
Zhao, S. Kad, B. Hahn, E. N. Remington, Bruce A. Wehrenberg, C. E. Huntington, C. M. Park, H. S. Bringa, Eduardo Marcial More, K. L. Meyers, Marc A. |
author |
Zhao, S. |
author_facet |
Zhao, S. Kad, B. Hahn, E. N. Remington, Bruce A. Wehrenberg, C. E. Huntington, C. M. Park, H. S. Bringa, Eduardo Marcial More, K. L. Meyers, Marc A. |
author_role |
author |
author2 |
Kad, B. Hahn, E. N. Remington, Bruce A. Wehrenberg, C. E. Huntington, C. M. Park, H. S. Bringa, Eduardo Marcial More, K. L. Meyers, Marc A. |
author2_role |
author author author author author author author author author |
dc.subject.none.fl_str_mv |
AMORPHIZATION LASER SHOCK COMPRESSION NANOCRYSTALLINE SILICON SILICON |
topic |
AMORPHIZATION LASER SHOCK COMPRESSION NANOCRYSTALLINE SILICON SILICON |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Here we report that high-power, pulsed, laser-driven shock compression of monocrystalline silicon produces directional amorphization, revealed by high-resolution transmission electron microscopy and confirmed by molecular dynamics simulations. At the lowest energy level experiment, generating a pressure of ~4 GPa, silicon reacts elastically. At intermediate energy levels (P~11 and 22 GPa), amorphization is observed both at the surface and directionally, along planes making angles close to the maximum shear. At the highest laser energy level explored here, (Ppeak ~28 GPa), the recovered sample shows a nanocrystalline microstructure near the surface. This nanocrystalline structure forms by crystallization from the amorphous phase and is thought to be a post-shock phenomenon. Shear-induced lattice defects (stacking faults and twins) on crystallographic slip planes play a crucial role in the onset of amorphization. Molecular dynamics show that silicon behaves elastically until ~10 GPa and, at slightly higher pressures, partial dislocations and stacking faults are emitted from the surface. Driven by the high-amplitude stress pulse, these defects travel inwards along specific crystallographic orientations and intersect, leading to further defect creation, additional plastic work, and, at higher pressures, amorphous bands in intersecting patterns. The typical high-pressure solid-solid phase transitions of silicon are not observed whereas the high shear stresses are relaxed by localized dislocation motion/interactions and eventually by directional amorphization, which occurs below the critical hydrostatic pressure for melting of silicon in shock compression. It is therefore proposed that the combined effects of hydrostatic and shear stresses lead to directional amorphization. Fil: Zhao, S.. University of California at San Diego; Estados Unidos Fil: Kad, B.. University of California at San Diego; Estados Unidos Fil: Hahn, E. N.. University of California at San Diego; Estados Unidos Fil: Remington, Bruce A.. Lawrence Livermore National Laboratory; Estados Unidos Fil: Wehrenberg, C. E.. Lawrence Livermore National Laboratory; Estados Unidos Fil: Huntington, C. M.. Lawrence Livermore National Laboratory; Estados Unidos Fil: Park, H. S.. Lawrence Livermore National Laboratory; Estados Unidos Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: More, K. L.. No especifíca; Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos |
description |
Here we report that high-power, pulsed, laser-driven shock compression of monocrystalline silicon produces directional amorphization, revealed by high-resolution transmission electron microscopy and confirmed by molecular dynamics simulations. At the lowest energy level experiment, generating a pressure of ~4 GPa, silicon reacts elastically. At intermediate energy levels (P~11 and 22 GPa), amorphization is observed both at the surface and directionally, along planes making angles close to the maximum shear. At the highest laser energy level explored here, (Ppeak ~28 GPa), the recovered sample shows a nanocrystalline microstructure near the surface. This nanocrystalline structure forms by crystallization from the amorphous phase and is thought to be a post-shock phenomenon. Shear-induced lattice defects (stacking faults and twins) on crystallographic slip planes play a crucial role in the onset of amorphization. Molecular dynamics show that silicon behaves elastically until ~10 GPa and, at slightly higher pressures, partial dislocations and stacking faults are emitted from the surface. Driven by the high-amplitude stress pulse, these defects travel inwards along specific crystallographic orientations and intersect, leading to further defect creation, additional plastic work, and, at higher pressures, amorphous bands in intersecting patterns. The typical high-pressure solid-solid phase transitions of silicon are not observed whereas the high shear stresses are relaxed by localized dislocation motion/interactions and eventually by directional amorphization, which occurs below the critical hydrostatic pressure for melting of silicon in shock compression. It is therefore proposed that the combined effects of hydrostatic and shear stresses lead to directional amorphization. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/180234 Zhao, S.; Kad, B.; Hahn, E. N.; Remington, Bruce A.; Wehrenberg, C. E.; et al.; Pressure and shear-induced amorphization of silicon; Elsevier; Extreme Mechanics Letters; 5; 12-2015; 74-80 2352-4316 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/180234 |
identifier_str_mv |
Zhao, S.; Kad, B.; Hahn, E. N.; Remington, Bruce A.; Wehrenberg, C. E.; et al.; Pressure and shear-induced amorphization of silicon; Elsevier; Extreme Mechanics Letters; 5; 12-2015; 74-80 2352-4316 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eml.2015.10.001 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846782348778012672 |
score |
12.982451 |