Pressure and shear-induced amorphization of silicon

Autores
Zhao, S.; Kad, B.; Hahn, E. N.; Remington, Bruce A.; Wehrenberg, C. E.; Huntington, C. M.; Park, H. S.; Bringa, Eduardo Marcial; More, K. L.; Meyers, Marc A.
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Here we report that high-power, pulsed, laser-driven shock compression of monocrystalline silicon produces directional amorphization, revealed by high-resolution transmission electron microscopy and confirmed by molecular dynamics simulations. At the lowest energy level experiment, generating a pressure of ~4 GPa, silicon reacts elastically. At intermediate energy levels (P~11 and 22 GPa), amorphization is observed both at the surface and directionally, along planes making angles close to the maximum shear. At the highest laser energy level explored here, (Ppeak ~28 GPa), the recovered sample shows a nanocrystalline microstructure near the surface. This nanocrystalline structure forms by crystallization from the amorphous phase and is thought to be a post-shock phenomenon. Shear-induced lattice defects (stacking faults and twins) on crystallographic slip planes play a crucial role in the onset of amorphization. Molecular dynamics show that silicon behaves elastically until ~10 GPa and, at slightly higher pressures, partial dislocations and stacking faults are emitted from the surface. Driven by the high-amplitude stress pulse, these defects travel inwards along specific crystallographic orientations and intersect, leading to further defect creation, additional plastic work, and, at higher pressures, amorphous bands in intersecting patterns. The typical high-pressure solid-solid phase transitions of silicon are not observed whereas the high shear stresses are relaxed by localized dislocation motion/interactions and eventually by directional amorphization, which occurs below the critical hydrostatic pressure for melting of silicon in shock compression. It is therefore proposed that the combined effects of hydrostatic and shear stresses lead to directional amorphization.
Fil: Zhao, S.. University of California at San Diego; Estados Unidos
Fil: Kad, B.. University of California at San Diego; Estados Unidos
Fil: Hahn, E. N.. University of California at San Diego; Estados Unidos
Fil: Remington, Bruce A.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Wehrenberg, C. E.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Huntington, C. M.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Park, H. S.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: More, K. L.. No especifíca;
Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos
Materia
AMORPHIZATION
LASER SHOCK COMPRESSION
NANOCRYSTALLINE SILICON
SILICON
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/180234

id CONICETDig_93cc75b4542d74f8653f73aa80cabe24
oai_identifier_str oai:ri.conicet.gov.ar:11336/180234
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Pressure and shear-induced amorphization of siliconZhao, S.Kad, B.Hahn, E. N.Remington, Bruce A.Wehrenberg, C. E.Huntington, C. M.Park, H. S.Bringa, Eduardo MarcialMore, K. L.Meyers, Marc A.AMORPHIZATIONLASER SHOCK COMPRESSIONNANOCRYSTALLINE SILICONSILICONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Here we report that high-power, pulsed, laser-driven shock compression of monocrystalline silicon produces directional amorphization, revealed by high-resolution transmission electron microscopy and confirmed by molecular dynamics simulations. At the lowest energy level experiment, generating a pressure of ~4 GPa, silicon reacts elastically. At intermediate energy levels (P~11 and 22 GPa), amorphization is observed both at the surface and directionally, along planes making angles close to the maximum shear. At the highest laser energy level explored here, (Ppeak ~28 GPa), the recovered sample shows a nanocrystalline microstructure near the surface. This nanocrystalline structure forms by crystallization from the amorphous phase and is thought to be a post-shock phenomenon. Shear-induced lattice defects (stacking faults and twins) on crystallographic slip planes play a crucial role in the onset of amorphization. Molecular dynamics show that silicon behaves elastically until ~10 GPa and, at slightly higher pressures, partial dislocations and stacking faults are emitted from the surface. Driven by the high-amplitude stress pulse, these defects travel inwards along specific crystallographic orientations and intersect, leading to further defect creation, additional plastic work, and, at higher pressures, amorphous bands in intersecting patterns. The typical high-pressure solid-solid phase transitions of silicon are not observed whereas the high shear stresses are relaxed by localized dislocation motion/interactions and eventually by directional amorphization, which occurs below the critical hydrostatic pressure for melting of silicon in shock compression. It is therefore proposed that the combined effects of hydrostatic and shear stresses lead to directional amorphization.Fil: Zhao, S.. University of California at San Diego; Estados UnidosFil: Kad, B.. University of California at San Diego; Estados UnidosFil: Hahn, E. N.. University of California at San Diego; Estados UnidosFil: Remington, Bruce A.. Lawrence Livermore National Laboratory; Estados UnidosFil: Wehrenberg, C. E.. Lawrence Livermore National Laboratory; Estados UnidosFil: Huntington, C. M.. Lawrence Livermore National Laboratory; Estados UnidosFil: Park, H. S.. Lawrence Livermore National Laboratory; Estados UnidosFil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: More, K. L.. No especifíca;Fil: Meyers, Marc A.. University of California at San Diego; Estados UnidosElsevier2015-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/180234Zhao, S.; Kad, B.; Hahn, E. N.; Remington, Bruce A.; Wehrenberg, C. E.; et al.; Pressure and shear-induced amorphization of silicon; Elsevier; Extreme Mechanics Letters; 5; 12-2015; 74-802352-4316CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.eml.2015.10.001info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:01:34Zoai:ri.conicet.gov.ar:11336/180234instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:01:34.784CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Pressure and shear-induced amorphization of silicon
title Pressure and shear-induced amorphization of silicon
spellingShingle Pressure and shear-induced amorphization of silicon
Zhao, S.
AMORPHIZATION
LASER SHOCK COMPRESSION
NANOCRYSTALLINE SILICON
SILICON
title_short Pressure and shear-induced amorphization of silicon
title_full Pressure and shear-induced amorphization of silicon
title_fullStr Pressure and shear-induced amorphization of silicon
title_full_unstemmed Pressure and shear-induced amorphization of silicon
title_sort Pressure and shear-induced amorphization of silicon
dc.creator.none.fl_str_mv Zhao, S.
Kad, B.
Hahn, E. N.
Remington, Bruce A.
Wehrenberg, C. E.
Huntington, C. M.
Park, H. S.
Bringa, Eduardo Marcial
More, K. L.
Meyers, Marc A.
author Zhao, S.
author_facet Zhao, S.
Kad, B.
Hahn, E. N.
Remington, Bruce A.
Wehrenberg, C. E.
Huntington, C. M.
Park, H. S.
Bringa, Eduardo Marcial
More, K. L.
Meyers, Marc A.
author_role author
author2 Kad, B.
Hahn, E. N.
Remington, Bruce A.
Wehrenberg, C. E.
Huntington, C. M.
Park, H. S.
Bringa, Eduardo Marcial
More, K. L.
Meyers, Marc A.
author2_role author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv AMORPHIZATION
LASER SHOCK COMPRESSION
NANOCRYSTALLINE SILICON
SILICON
topic AMORPHIZATION
LASER SHOCK COMPRESSION
NANOCRYSTALLINE SILICON
SILICON
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Here we report that high-power, pulsed, laser-driven shock compression of monocrystalline silicon produces directional amorphization, revealed by high-resolution transmission electron microscopy and confirmed by molecular dynamics simulations. At the lowest energy level experiment, generating a pressure of ~4 GPa, silicon reacts elastically. At intermediate energy levels (P~11 and 22 GPa), amorphization is observed both at the surface and directionally, along planes making angles close to the maximum shear. At the highest laser energy level explored here, (Ppeak ~28 GPa), the recovered sample shows a nanocrystalline microstructure near the surface. This nanocrystalline structure forms by crystallization from the amorphous phase and is thought to be a post-shock phenomenon. Shear-induced lattice defects (stacking faults and twins) on crystallographic slip planes play a crucial role in the onset of amorphization. Molecular dynamics show that silicon behaves elastically until ~10 GPa and, at slightly higher pressures, partial dislocations and stacking faults are emitted from the surface. Driven by the high-amplitude stress pulse, these defects travel inwards along specific crystallographic orientations and intersect, leading to further defect creation, additional plastic work, and, at higher pressures, amorphous bands in intersecting patterns. The typical high-pressure solid-solid phase transitions of silicon are not observed whereas the high shear stresses are relaxed by localized dislocation motion/interactions and eventually by directional amorphization, which occurs below the critical hydrostatic pressure for melting of silicon in shock compression. It is therefore proposed that the combined effects of hydrostatic and shear stresses lead to directional amorphization.
Fil: Zhao, S.. University of California at San Diego; Estados Unidos
Fil: Kad, B.. University of California at San Diego; Estados Unidos
Fil: Hahn, E. N.. University of California at San Diego; Estados Unidos
Fil: Remington, Bruce A.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Wehrenberg, C. E.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Huntington, C. M.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Park, H. S.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: More, K. L.. No especifíca;
Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos
description Here we report that high-power, pulsed, laser-driven shock compression of monocrystalline silicon produces directional amorphization, revealed by high-resolution transmission electron microscopy and confirmed by molecular dynamics simulations. At the lowest energy level experiment, generating a pressure of ~4 GPa, silicon reacts elastically. At intermediate energy levels (P~11 and 22 GPa), amorphization is observed both at the surface and directionally, along planes making angles close to the maximum shear. At the highest laser energy level explored here, (Ppeak ~28 GPa), the recovered sample shows a nanocrystalline microstructure near the surface. This nanocrystalline structure forms by crystallization from the amorphous phase and is thought to be a post-shock phenomenon. Shear-induced lattice defects (stacking faults and twins) on crystallographic slip planes play a crucial role in the onset of amorphization. Molecular dynamics show that silicon behaves elastically until ~10 GPa and, at slightly higher pressures, partial dislocations and stacking faults are emitted from the surface. Driven by the high-amplitude stress pulse, these defects travel inwards along specific crystallographic orientations and intersect, leading to further defect creation, additional plastic work, and, at higher pressures, amorphous bands in intersecting patterns. The typical high-pressure solid-solid phase transitions of silicon are not observed whereas the high shear stresses are relaxed by localized dislocation motion/interactions and eventually by directional amorphization, which occurs below the critical hydrostatic pressure for melting of silicon in shock compression. It is therefore proposed that the combined effects of hydrostatic and shear stresses lead to directional amorphization.
publishDate 2015
dc.date.none.fl_str_mv 2015-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/180234
Zhao, S.; Kad, B.; Hahn, E. N.; Remington, Bruce A.; Wehrenberg, C. E.; et al.; Pressure and shear-induced amorphization of silicon; Elsevier; Extreme Mechanics Letters; 5; 12-2015; 74-80
2352-4316
CONICET Digital
CONICET
url http://hdl.handle.net/11336/180234
identifier_str_mv Zhao, S.; Kad, B.; Hahn, E. N.; Remington, Bruce A.; Wehrenberg, C. E.; et al.; Pressure and shear-induced amorphization of silicon; Elsevier; Extreme Mechanics Letters; 5; 12-2015; 74-80
2352-4316
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eml.2015.10.001
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782348778012672
score 12.982451