Shock compression of [001] single crystal silicon
- Autores
- Zhao, S.; Hahn, E. N.; Kad, B.; Remington, B .A.; Bringa, Eduardo Marcial; Meyers, Marc A.
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent with dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression.
Fil: Zhao, S.. University of California at San Diego; Estados Unidos
Fil: Hahn, E. N.. University of California at San Diego; Estados Unidos
Fil: Kad, B.. University of California at San Diego; Estados Unidos
Fil: Remington, B .A.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos - Materia
-
Silicon
Shock
Plasticity - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/56500
Ver los metadatos del registro completo
id |
CONICETDig_61a9e351b4ec41dcc2ffea5e37ffa9c8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/56500 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Shock compression of [001] single crystal siliconZhao, S.Hahn, E. N.Kad, B.Remington, B .A.Bringa, Eduardo MarcialMeyers, Marc A.SiliconShockPlasticityhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent with dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression.Fil: Zhao, S.. University of California at San Diego; Estados UnidosFil: Hahn, E. N.. University of California at San Diego; Estados UnidosFil: Kad, B.. University of California at San Diego; Estados UnidosFil: Remington, B .A.. Lawrence Livermore National Laboratory; Estados UnidosFil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Meyers, Marc A.. University of California at San Diego; Estados UnidosEDP Sciences2016-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/56500Zhao, S.; Hahn, E. N.; Kad, B.; Remington, B .A.; Bringa, Eduardo Marcial; et al.; Shock compression of [001] single crystal silicon; EDP Sciences; European Physical Journal: Special Topics; 225; 2; 4-2016; 335-3411951-63551951-6401CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1140/epjst/e2016-02634-7info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1140%2Fepjst%2Fe2016-02634-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:03Zoai:ri.conicet.gov.ar:11336/56500instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:04.203CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Shock compression of [001] single crystal silicon |
title |
Shock compression of [001] single crystal silicon |
spellingShingle |
Shock compression of [001] single crystal silicon Zhao, S. Silicon Shock Plasticity |
title_short |
Shock compression of [001] single crystal silicon |
title_full |
Shock compression of [001] single crystal silicon |
title_fullStr |
Shock compression of [001] single crystal silicon |
title_full_unstemmed |
Shock compression of [001] single crystal silicon |
title_sort |
Shock compression of [001] single crystal silicon |
dc.creator.none.fl_str_mv |
Zhao, S. Hahn, E. N. Kad, B. Remington, B .A. Bringa, Eduardo Marcial Meyers, Marc A. |
author |
Zhao, S. |
author_facet |
Zhao, S. Hahn, E. N. Kad, B. Remington, B .A. Bringa, Eduardo Marcial Meyers, Marc A. |
author_role |
author |
author2 |
Hahn, E. N. Kad, B. Remington, B .A. Bringa, Eduardo Marcial Meyers, Marc A. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Silicon Shock Plasticity |
topic |
Silicon Shock Plasticity |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent with dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression. Fil: Zhao, S.. University of California at San Diego; Estados Unidos Fil: Hahn, E. N.. University of California at San Diego; Estados Unidos Fil: Kad, B.. University of California at San Diego; Estados Unidos Fil: Remington, B .A.. Lawrence Livermore National Laboratory; Estados Unidos Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos |
description |
Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent with dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/56500 Zhao, S.; Hahn, E. N.; Kad, B.; Remington, B .A.; Bringa, Eduardo Marcial; et al.; Shock compression of [001] single crystal silicon; EDP Sciences; European Physical Journal: Special Topics; 225; 2; 4-2016; 335-341 1951-6355 1951-6401 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/56500 |
identifier_str_mv |
Zhao, S.; Hahn, E. N.; Kad, B.; Remington, B .A.; Bringa, Eduardo Marcial; et al.; Shock compression of [001] single crystal silicon; EDP Sciences; European Physical Journal: Special Topics; 225; 2; 4-2016; 335-341 1951-6355 1951-6401 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1140/epjst/e2016-02634-7 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1140%2Fepjst%2Fe2016-02634-7 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
EDP Sciences |
publisher.none.fl_str_mv |
EDP Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269133987643392 |
score |
13.13397 |