Shock compression of [001] single crystal silicon

Autores
Zhao, S.; Hahn, E. N.; Kad, B.; Remington, B .A.; Bringa, Eduardo Marcial; Meyers, Marc A.
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent with dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression.
Fil: Zhao, S.. University of California at San Diego; Estados Unidos
Fil: Hahn, E. N.. University of California at San Diego; Estados Unidos
Fil: Kad, B.. University of California at San Diego; Estados Unidos
Fil: Remington, B .A.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos
Materia
Silicon
Shock
Plasticity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/56500

id CONICETDig_61a9e351b4ec41dcc2ffea5e37ffa9c8
oai_identifier_str oai:ri.conicet.gov.ar:11336/56500
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Shock compression of [001] single crystal siliconZhao, S.Hahn, E. N.Kad, B.Remington, B .A.Bringa, Eduardo MarcialMeyers, Marc A.SiliconShockPlasticityhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent with dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression.Fil: Zhao, S.. University of California at San Diego; Estados UnidosFil: Hahn, E. N.. University of California at San Diego; Estados UnidosFil: Kad, B.. University of California at San Diego; Estados UnidosFil: Remington, B .A.. Lawrence Livermore National Laboratory; Estados UnidosFil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Meyers, Marc A.. University of California at San Diego; Estados UnidosEDP Sciences2016-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/56500Zhao, S.; Hahn, E. N.; Kad, B.; Remington, B .A.; Bringa, Eduardo Marcial; et al.; Shock compression of [001] single crystal silicon; EDP Sciences; European Physical Journal: Special Topics; 225; 2; 4-2016; 335-3411951-63551951-6401CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1140/epjst/e2016-02634-7info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1140%2Fepjst%2Fe2016-02634-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:03Zoai:ri.conicet.gov.ar:11336/56500instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:04.203CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Shock compression of [001] single crystal silicon
title Shock compression of [001] single crystal silicon
spellingShingle Shock compression of [001] single crystal silicon
Zhao, S.
Silicon
Shock
Plasticity
title_short Shock compression of [001] single crystal silicon
title_full Shock compression of [001] single crystal silicon
title_fullStr Shock compression of [001] single crystal silicon
title_full_unstemmed Shock compression of [001] single crystal silicon
title_sort Shock compression of [001] single crystal silicon
dc.creator.none.fl_str_mv Zhao, S.
Hahn, E. N.
Kad, B.
Remington, B .A.
Bringa, Eduardo Marcial
Meyers, Marc A.
author Zhao, S.
author_facet Zhao, S.
Hahn, E. N.
Kad, B.
Remington, B .A.
Bringa, Eduardo Marcial
Meyers, Marc A.
author_role author
author2 Hahn, E. N.
Kad, B.
Remington, B .A.
Bringa, Eduardo Marcial
Meyers, Marc A.
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Silicon
Shock
Plasticity
topic Silicon
Shock
Plasticity
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent with dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression.
Fil: Zhao, S.. University of California at San Diego; Estados Unidos
Fil: Hahn, E. N.. University of California at San Diego; Estados Unidos
Fil: Kad, B.. University of California at San Diego; Estados Unidos
Fil: Remington, B .A.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos
description Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent with dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression.
publishDate 2016
dc.date.none.fl_str_mv 2016-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/56500
Zhao, S.; Hahn, E. N.; Kad, B.; Remington, B .A.; Bringa, Eduardo Marcial; et al.; Shock compression of [001] single crystal silicon; EDP Sciences; European Physical Journal: Special Topics; 225; 2; 4-2016; 335-341
1951-6355
1951-6401
CONICET Digital
CONICET
url http://hdl.handle.net/11336/56500
identifier_str_mv Zhao, S.; Hahn, E. N.; Kad, B.; Remington, B .A.; Bringa, Eduardo Marcial; et al.; Shock compression of [001] single crystal silicon; EDP Sciences; European Physical Journal: Special Topics; 225; 2; 4-2016; 335-341
1951-6355
1951-6401
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1140/epjst/e2016-02634-7
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1140%2Fepjst%2Fe2016-02634-7
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv EDP Sciences
publisher.none.fl_str_mv EDP Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269133987643392
score 13.13397