Amorphization and nanocrystallization of silicon under shock compression

Autores
Zhao, S.; Hahn, E. N.; Kad, B.; Remington, Bruce A.; Wehrenberg, C. E.; Bringa, Eduardo Marcial; Meyers, Marc A.
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon unveiled remarkable structural changes above a pressure threshold. Two distinct amorphous regions were identified: (a) a bulk amorphous layer close to the surface and (b) amorphous bands initially aligned with {111} slip planes. Further increase of the laser energy leads to the re-crystallization of amorphous silicon into nanocrystals with high concentration of nano-twins. This amorphization is produced by the combined effect of high magnitude hydrostatic and shear stresses under dynamic shock compression. Shock-induced defects play a very important role in the onset of amorphization. Calculations of the free energy changes with pressure and shear, using the Patel-Cohen methodology, are in agreement with the experimental results. Molecular dynamics simulation corroborates the amorphization, showing that it is initiated by the nucleation and propagation of partial dislocations. The nucleation of amorphization is analyzed qualitatively by classical nucleation theory.
Fil: Zhao, S.. University of California at San Diego; Estados Unidos
Fil: Hahn, E. N.. University of California at San Diego; Estados Unidos
Fil: Kad, B.. University of California at San Diego; Estados Unidos
Fil: Remington, Bruce A.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Wehrenberg, C. E.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos
Materia
Amorphization
Laser Shock Compression
Nano-Twinning
Nanocrystalline
Silicon
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/37935

id CONICETDig_547acb51113b0cb72ff8544c5c6eb58e
oai_identifier_str oai:ri.conicet.gov.ar:11336/37935
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Amorphization and nanocrystallization of silicon under shock compressionZhao, S.Hahn, E. N.Kad, B.Remington, Bruce A.Wehrenberg, C. E.Bringa, Eduardo MarcialMeyers, Marc A.AmorphizationLaser Shock CompressionNano-TwinningNanocrystallineSiliconhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon unveiled remarkable structural changes above a pressure threshold. Two distinct amorphous regions were identified: (a) a bulk amorphous layer close to the surface and (b) amorphous bands initially aligned with {111} slip planes. Further increase of the laser energy leads to the re-crystallization of amorphous silicon into nanocrystals with high concentration of nano-twins. This amorphization is produced by the combined effect of high magnitude hydrostatic and shear stresses under dynamic shock compression. Shock-induced defects play a very important role in the onset of amorphization. Calculations of the free energy changes with pressure and shear, using the Patel-Cohen methodology, are in agreement with the experimental results. Molecular dynamics simulation corroborates the amorphization, showing that it is initiated by the nucleation and propagation of partial dislocations. The nucleation of amorphization is analyzed qualitatively by classical nucleation theory.Fil: Zhao, S.. University of California at San Diego; Estados UnidosFil: Hahn, E. N.. University of California at San Diego; Estados UnidosFil: Kad, B.. University of California at San Diego; Estados UnidosFil: Remington, Bruce A.. Lawrence Livermore National Laboratory; Estados UnidosFil: Wehrenberg, C. E.. Lawrence Livermore National Laboratory; Estados UnidosFil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Meyers, Marc A.. University of California at San Diego; Estados UnidosPergamon-Elsevier Science Ltd2016-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/37935Zhao, S.; Hahn, E. N.; Kad, B.; Remington, Bruce A.; Wehrenberg, C. E.; et al.; Amorphization and nanocrystallization of silicon under shock compression; Pergamon-Elsevier Science Ltd; Acta Materialia; 103; 1-2016; 519-5331359-6454CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.actamat.2015.09.022info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1359645415006916info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:29Zoai:ri.conicet.gov.ar:11336/37935instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:29.808CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Amorphization and nanocrystallization of silicon under shock compression
title Amorphization and nanocrystallization of silicon under shock compression
spellingShingle Amorphization and nanocrystallization of silicon under shock compression
Zhao, S.
Amorphization
Laser Shock Compression
Nano-Twinning
Nanocrystalline
Silicon
title_short Amorphization and nanocrystallization of silicon under shock compression
title_full Amorphization and nanocrystallization of silicon under shock compression
title_fullStr Amorphization and nanocrystallization of silicon under shock compression
title_full_unstemmed Amorphization and nanocrystallization of silicon under shock compression
title_sort Amorphization and nanocrystallization of silicon under shock compression
dc.creator.none.fl_str_mv Zhao, S.
Hahn, E. N.
Kad, B.
Remington, Bruce A.
Wehrenberg, C. E.
Bringa, Eduardo Marcial
Meyers, Marc A.
author Zhao, S.
author_facet Zhao, S.
Hahn, E. N.
Kad, B.
Remington, Bruce A.
Wehrenberg, C. E.
Bringa, Eduardo Marcial
Meyers, Marc A.
author_role author
author2 Hahn, E. N.
Kad, B.
Remington, Bruce A.
Wehrenberg, C. E.
Bringa, Eduardo Marcial
Meyers, Marc A.
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Amorphization
Laser Shock Compression
Nano-Twinning
Nanocrystalline
Silicon
topic Amorphization
Laser Shock Compression
Nano-Twinning
Nanocrystalline
Silicon
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon unveiled remarkable structural changes above a pressure threshold. Two distinct amorphous regions were identified: (a) a bulk amorphous layer close to the surface and (b) amorphous bands initially aligned with {111} slip planes. Further increase of the laser energy leads to the re-crystallization of amorphous silicon into nanocrystals with high concentration of nano-twins. This amorphization is produced by the combined effect of high magnitude hydrostatic and shear stresses under dynamic shock compression. Shock-induced defects play a very important role in the onset of amorphization. Calculations of the free energy changes with pressure and shear, using the Patel-Cohen methodology, are in agreement with the experimental results. Molecular dynamics simulation corroborates the amorphization, showing that it is initiated by the nucleation and propagation of partial dislocations. The nucleation of amorphization is analyzed qualitatively by classical nucleation theory.
Fil: Zhao, S.. University of California at San Diego; Estados Unidos
Fil: Hahn, E. N.. University of California at San Diego; Estados Unidos
Fil: Kad, B.. University of California at San Diego; Estados Unidos
Fil: Remington, Bruce A.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Wehrenberg, C. E.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos
description High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon unveiled remarkable structural changes above a pressure threshold. Two distinct amorphous regions were identified: (a) a bulk amorphous layer close to the surface and (b) amorphous bands initially aligned with {111} slip planes. Further increase of the laser energy leads to the re-crystallization of amorphous silicon into nanocrystals with high concentration of nano-twins. This amorphization is produced by the combined effect of high magnitude hydrostatic and shear stresses under dynamic shock compression. Shock-induced defects play a very important role in the onset of amorphization. Calculations of the free energy changes with pressure and shear, using the Patel-Cohen methodology, are in agreement with the experimental results. Molecular dynamics simulation corroborates the amorphization, showing that it is initiated by the nucleation and propagation of partial dislocations. The nucleation of amorphization is analyzed qualitatively by classical nucleation theory.
publishDate 2016
dc.date.none.fl_str_mv 2016-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/37935
Zhao, S.; Hahn, E. N.; Kad, B.; Remington, Bruce A.; Wehrenberg, C. E.; et al.; Amorphization and nanocrystallization of silicon under shock compression; Pergamon-Elsevier Science Ltd; Acta Materialia; 103; 1-2016; 519-533
1359-6454
CONICET Digital
CONICET
url http://hdl.handle.net/11336/37935
identifier_str_mv Zhao, S.; Hahn, E. N.; Kad, B.; Remington, Bruce A.; Wehrenberg, C. E.; et al.; Amorphization and nanocrystallization of silicon under shock compression; Pergamon-Elsevier Science Ltd; Acta Materialia; 103; 1-2016; 519-533
1359-6454
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.actamat.2015.09.022
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1359645415006916
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268862862589952
score 13.13397