Amorphization and nanocrystallization of silicon under shock compression
- Autores
- Zhao, S.; Hahn, E. N.; Kad, B.; Remington, Bruce A.; Wehrenberg, C. E.; Bringa, Eduardo Marcial; Meyers, Marc A.
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon unveiled remarkable structural changes above a pressure threshold. Two distinct amorphous regions were identified: (a) a bulk amorphous layer close to the surface and (b) amorphous bands initially aligned with {111} slip planes. Further increase of the laser energy leads to the re-crystallization of amorphous silicon into nanocrystals with high concentration of nano-twins. This amorphization is produced by the combined effect of high magnitude hydrostatic and shear stresses under dynamic shock compression. Shock-induced defects play a very important role in the onset of amorphization. Calculations of the free energy changes with pressure and shear, using the Patel-Cohen methodology, are in agreement with the experimental results. Molecular dynamics simulation corroborates the amorphization, showing that it is initiated by the nucleation and propagation of partial dislocations. The nucleation of amorphization is analyzed qualitatively by classical nucleation theory.
Fil: Zhao, S.. University of California at San Diego; Estados Unidos
Fil: Hahn, E. N.. University of California at San Diego; Estados Unidos
Fil: Kad, B.. University of California at San Diego; Estados Unidos
Fil: Remington, Bruce A.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Wehrenberg, C. E.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos - Materia
-
Amorphization
Laser Shock Compression
Nano-Twinning
Nanocrystalline
Silicon - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/37935
Ver los metadatos del registro completo
id |
CONICETDig_547acb51113b0cb72ff8544c5c6eb58e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/37935 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Amorphization and nanocrystallization of silicon under shock compressionZhao, S.Hahn, E. N.Kad, B.Remington, Bruce A.Wehrenberg, C. E.Bringa, Eduardo MarcialMeyers, Marc A.AmorphizationLaser Shock CompressionNano-TwinningNanocrystallineSiliconhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon unveiled remarkable structural changes above a pressure threshold. Two distinct amorphous regions were identified: (a) a bulk amorphous layer close to the surface and (b) amorphous bands initially aligned with {111} slip planes. Further increase of the laser energy leads to the re-crystallization of amorphous silicon into nanocrystals with high concentration of nano-twins. This amorphization is produced by the combined effect of high magnitude hydrostatic and shear stresses under dynamic shock compression. Shock-induced defects play a very important role in the onset of amorphization. Calculations of the free energy changes with pressure and shear, using the Patel-Cohen methodology, are in agreement with the experimental results. Molecular dynamics simulation corroborates the amorphization, showing that it is initiated by the nucleation and propagation of partial dislocations. The nucleation of amorphization is analyzed qualitatively by classical nucleation theory.Fil: Zhao, S.. University of California at San Diego; Estados UnidosFil: Hahn, E. N.. University of California at San Diego; Estados UnidosFil: Kad, B.. University of California at San Diego; Estados UnidosFil: Remington, Bruce A.. Lawrence Livermore National Laboratory; Estados UnidosFil: Wehrenberg, C. E.. Lawrence Livermore National Laboratory; Estados UnidosFil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Meyers, Marc A.. University of California at San Diego; Estados UnidosPergamon-Elsevier Science Ltd2016-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/37935Zhao, S.; Hahn, E. N.; Kad, B.; Remington, Bruce A.; Wehrenberg, C. E.; et al.; Amorphization and nanocrystallization of silicon under shock compression; Pergamon-Elsevier Science Ltd; Acta Materialia; 103; 1-2016; 519-5331359-6454CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.actamat.2015.09.022info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1359645415006916info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:29Zoai:ri.conicet.gov.ar:11336/37935instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:29.808CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Amorphization and nanocrystallization of silicon under shock compression |
title |
Amorphization and nanocrystallization of silicon under shock compression |
spellingShingle |
Amorphization and nanocrystallization of silicon under shock compression Zhao, S. Amorphization Laser Shock Compression Nano-Twinning Nanocrystalline Silicon |
title_short |
Amorphization and nanocrystallization of silicon under shock compression |
title_full |
Amorphization and nanocrystallization of silicon under shock compression |
title_fullStr |
Amorphization and nanocrystallization of silicon under shock compression |
title_full_unstemmed |
Amorphization and nanocrystallization of silicon under shock compression |
title_sort |
Amorphization and nanocrystallization of silicon under shock compression |
dc.creator.none.fl_str_mv |
Zhao, S. Hahn, E. N. Kad, B. Remington, Bruce A. Wehrenberg, C. E. Bringa, Eduardo Marcial Meyers, Marc A. |
author |
Zhao, S. |
author_facet |
Zhao, S. Hahn, E. N. Kad, B. Remington, Bruce A. Wehrenberg, C. E. Bringa, Eduardo Marcial Meyers, Marc A. |
author_role |
author |
author2 |
Hahn, E. N. Kad, B. Remington, Bruce A. Wehrenberg, C. E. Bringa, Eduardo Marcial Meyers, Marc A. |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Amorphization Laser Shock Compression Nano-Twinning Nanocrystalline Silicon |
topic |
Amorphization Laser Shock Compression Nano-Twinning Nanocrystalline Silicon |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon unveiled remarkable structural changes above a pressure threshold. Two distinct amorphous regions were identified: (a) a bulk amorphous layer close to the surface and (b) amorphous bands initially aligned with {111} slip planes. Further increase of the laser energy leads to the re-crystallization of amorphous silicon into nanocrystals with high concentration of nano-twins. This amorphization is produced by the combined effect of high magnitude hydrostatic and shear stresses under dynamic shock compression. Shock-induced defects play a very important role in the onset of amorphization. Calculations of the free energy changes with pressure and shear, using the Patel-Cohen methodology, are in agreement with the experimental results. Molecular dynamics simulation corroborates the amorphization, showing that it is initiated by the nucleation and propagation of partial dislocations. The nucleation of amorphization is analyzed qualitatively by classical nucleation theory. Fil: Zhao, S.. University of California at San Diego; Estados Unidos Fil: Hahn, E. N.. University of California at San Diego; Estados Unidos Fil: Kad, B.. University of California at San Diego; Estados Unidos Fil: Remington, Bruce A.. Lawrence Livermore National Laboratory; Estados Unidos Fil: Wehrenberg, C. E.. Lawrence Livermore National Laboratory; Estados Unidos Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos |
description |
High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon unveiled remarkable structural changes above a pressure threshold. Two distinct amorphous regions were identified: (a) a bulk amorphous layer close to the surface and (b) amorphous bands initially aligned with {111} slip planes. Further increase of the laser energy leads to the re-crystallization of amorphous silicon into nanocrystals with high concentration of nano-twins. This amorphization is produced by the combined effect of high magnitude hydrostatic and shear stresses under dynamic shock compression. Shock-induced defects play a very important role in the onset of amorphization. Calculations of the free energy changes with pressure and shear, using the Patel-Cohen methodology, are in agreement with the experimental results. Molecular dynamics simulation corroborates the amorphization, showing that it is initiated by the nucleation and propagation of partial dislocations. The nucleation of amorphization is analyzed qualitatively by classical nucleation theory. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/37935 Zhao, S.; Hahn, E. N.; Kad, B.; Remington, Bruce A.; Wehrenberg, C. E.; et al.; Amorphization and nanocrystallization of silicon under shock compression; Pergamon-Elsevier Science Ltd; Acta Materialia; 103; 1-2016; 519-533 1359-6454 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/37935 |
identifier_str_mv |
Zhao, S.; Hahn, E. N.; Kad, B.; Remington, Bruce A.; Wehrenberg, C. E.; et al.; Amorphization and nanocrystallization of silicon under shock compression; Pergamon-Elsevier Science Ltd; Acta Materialia; 103; 1-2016; 519-533 1359-6454 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.actamat.2015.09.022 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1359645415006916 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268862862589952 |
score |
13.13397 |