Toric dynamical systems

Autores
Craciun, Gheorghe; Dickenstein, Alicia Marcela; Shiu, Anne; Sturmfels, Bernd
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Toric dynamical systems are known as complex balancing mass action systems in the mathematical chemistry literature, where many of their remarkable properties have been established. They include as special cases all deficiency zero systems and all detailed balancing systems. One feature is that the steady state locus of a toric dynamical system is a toric variety, which has a unique point within each invariant polyhedron. We develop the basic theory of toric dynamical systems in the context of computational algebraic geometry and show that the associated moduli space is also a toric variety. It is conjectured that the complex balancing state is a global attractor. We prove this for detailed balancing systems whose invariant polyhedron is two-dimensional and bounded.
Fil: Craciun, Gheorghe. University of Wisconsin; Estados Unidos
Fil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Shiu, Anne. University of California at Berkeley; Estados Unidos
Fil: Sturmfels, Bernd. University of California at Berkeley; Estados Unidos
Materia
CHEMICAL REACTION NETWORK
TORIC IDEAL
COMPLEX BALANCING
DETAILED BALANCING
DEFICIENCY ZERO
TRAJECTORY
BIRCH’S THEOREM
MATRIX-TREE THEOREM
MODULI SPACE
POLYHEDRON
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/151319

id CONICETDig_9314b28af8cee3cbc5fa1dbc88e29a0a
oai_identifier_str oai:ri.conicet.gov.ar:11336/151319
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Toric dynamical systemsCraciun, GheorgheDickenstein, Alicia MarcelaShiu, AnneSturmfels, BerndCHEMICAL REACTION NETWORKTORIC IDEALCOMPLEX BALANCINGDETAILED BALANCINGDEFICIENCY ZEROTRAJECTORYBIRCH’S THEOREMMATRIX-TREE THEOREMMODULI SPACEPOLYHEDRONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Toric dynamical systems are known as complex balancing mass action systems in the mathematical chemistry literature, where many of their remarkable properties have been established. They include as special cases all deficiency zero systems and all detailed balancing systems. One feature is that the steady state locus of a toric dynamical system is a toric variety, which has a unique point within each invariant polyhedron. We develop the basic theory of toric dynamical systems in the context of computational algebraic geometry and show that the associated moduli space is also a toric variety. It is conjectured that the complex balancing state is a global attractor. We prove this for detailed balancing systems whose invariant polyhedron is two-dimensional and bounded.Fil: Craciun, Gheorghe. University of Wisconsin; Estados UnidosFil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Shiu, Anne. University of California at Berkeley; Estados UnidosFil: Sturmfels, Bernd. University of California at Berkeley; Estados UnidosAcademic Press Ltd - Elsevier Science Ltd2009-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/151319Craciun, Gheorghe; Dickenstein, Alicia Marcela; Shiu, Anne; Sturmfels, Bernd; Toric dynamical systems; Academic Press Ltd - Elsevier Science Ltd; Journal Of Symbolic Computation; 44; 11; 5-2009; 1551-15650747-7171CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jsc.2008.08.006info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0747717109000923?via%3Dihubinfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/0708.3431info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:28:25Zoai:ri.conicet.gov.ar:11336/151319instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:28:25.784CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Toric dynamical systems
title Toric dynamical systems
spellingShingle Toric dynamical systems
Craciun, Gheorghe
CHEMICAL REACTION NETWORK
TORIC IDEAL
COMPLEX BALANCING
DETAILED BALANCING
DEFICIENCY ZERO
TRAJECTORY
BIRCH’S THEOREM
MATRIX-TREE THEOREM
MODULI SPACE
POLYHEDRON
title_short Toric dynamical systems
title_full Toric dynamical systems
title_fullStr Toric dynamical systems
title_full_unstemmed Toric dynamical systems
title_sort Toric dynamical systems
dc.creator.none.fl_str_mv Craciun, Gheorghe
Dickenstein, Alicia Marcela
Shiu, Anne
Sturmfels, Bernd
author Craciun, Gheorghe
author_facet Craciun, Gheorghe
Dickenstein, Alicia Marcela
Shiu, Anne
Sturmfels, Bernd
author_role author
author2 Dickenstein, Alicia Marcela
Shiu, Anne
Sturmfels, Bernd
author2_role author
author
author
dc.subject.none.fl_str_mv CHEMICAL REACTION NETWORK
TORIC IDEAL
COMPLEX BALANCING
DETAILED BALANCING
DEFICIENCY ZERO
TRAJECTORY
BIRCH’S THEOREM
MATRIX-TREE THEOREM
MODULI SPACE
POLYHEDRON
topic CHEMICAL REACTION NETWORK
TORIC IDEAL
COMPLEX BALANCING
DETAILED BALANCING
DEFICIENCY ZERO
TRAJECTORY
BIRCH’S THEOREM
MATRIX-TREE THEOREM
MODULI SPACE
POLYHEDRON
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Toric dynamical systems are known as complex balancing mass action systems in the mathematical chemistry literature, where many of their remarkable properties have been established. They include as special cases all deficiency zero systems and all detailed balancing systems. One feature is that the steady state locus of a toric dynamical system is a toric variety, which has a unique point within each invariant polyhedron. We develop the basic theory of toric dynamical systems in the context of computational algebraic geometry and show that the associated moduli space is also a toric variety. It is conjectured that the complex balancing state is a global attractor. We prove this for detailed balancing systems whose invariant polyhedron is two-dimensional and bounded.
Fil: Craciun, Gheorghe. University of Wisconsin; Estados Unidos
Fil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Shiu, Anne. University of California at Berkeley; Estados Unidos
Fil: Sturmfels, Bernd. University of California at Berkeley; Estados Unidos
description Toric dynamical systems are known as complex balancing mass action systems in the mathematical chemistry literature, where many of their remarkable properties have been established. They include as special cases all deficiency zero systems and all detailed balancing systems. One feature is that the steady state locus of a toric dynamical system is a toric variety, which has a unique point within each invariant polyhedron. We develop the basic theory of toric dynamical systems in the context of computational algebraic geometry and show that the associated moduli space is also a toric variety. It is conjectured that the complex balancing state is a global attractor. We prove this for detailed balancing systems whose invariant polyhedron is two-dimensional and bounded.
publishDate 2009
dc.date.none.fl_str_mv 2009-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/151319
Craciun, Gheorghe; Dickenstein, Alicia Marcela; Shiu, Anne; Sturmfels, Bernd; Toric dynamical systems; Academic Press Ltd - Elsevier Science Ltd; Journal Of Symbolic Computation; 44; 11; 5-2009; 1551-1565
0747-7171
CONICET Digital
CONICET
url http://hdl.handle.net/11336/151319
identifier_str_mv Craciun, Gheorghe; Dickenstein, Alicia Marcela; Shiu, Anne; Sturmfels, Bernd; Toric dynamical systems; Academic Press Ltd - Elsevier Science Ltd; Journal Of Symbolic Computation; 44; 11; 5-2009; 1551-1565
0747-7171
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jsc.2008.08.006
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0747717109000923?via%3Dihub
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/0708.3431
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Ltd - Elsevier Science Ltd
publisher.none.fl_str_mv Academic Press Ltd - Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083424884883456
score 13.22299