Toric dynamical systems
- Autores
- Craciun, Gheorghe; Dickenstein, Alicia Marcela; Shiu, Anne; Sturmfels, Bernd
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Toric dynamical systems are known as complex balancing mass action systems in the mathematical chemistry literature, where many of their remarkable properties have been established. They include as special cases all deficiency zero systems and all detailed balancing systems. One feature is that the steady state locus of a toric dynamical system is a toric variety, which has a unique point within each invariant polyhedron. We develop the basic theory of toric dynamical systems in the context of computational algebraic geometry and show that the associated moduli space is also a toric variety. It is conjectured that the complex balancing state is a global attractor. We prove this for detailed balancing systems whose invariant polyhedron is two-dimensional and bounded.
Fil: Craciun, Gheorghe. University of Wisconsin; Estados Unidos
Fil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Shiu, Anne. University of California at Berkeley; Estados Unidos
Fil: Sturmfels, Bernd. University of California at Berkeley; Estados Unidos - Materia
-
CHEMICAL REACTION NETWORK
TORIC IDEAL
COMPLEX BALANCING
DETAILED BALANCING
DEFICIENCY ZERO
TRAJECTORY
BIRCH’S THEOREM
MATRIX-TREE THEOREM
MODULI SPACE
POLYHEDRON - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/151319
Ver los metadatos del registro completo
id |
CONICETDig_9314b28af8cee3cbc5fa1dbc88e29a0a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/151319 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Toric dynamical systemsCraciun, GheorgheDickenstein, Alicia MarcelaShiu, AnneSturmfels, BerndCHEMICAL REACTION NETWORKTORIC IDEALCOMPLEX BALANCINGDETAILED BALANCINGDEFICIENCY ZEROTRAJECTORYBIRCH’S THEOREMMATRIX-TREE THEOREMMODULI SPACEPOLYHEDRONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Toric dynamical systems are known as complex balancing mass action systems in the mathematical chemistry literature, where many of their remarkable properties have been established. They include as special cases all deficiency zero systems and all detailed balancing systems. One feature is that the steady state locus of a toric dynamical system is a toric variety, which has a unique point within each invariant polyhedron. We develop the basic theory of toric dynamical systems in the context of computational algebraic geometry and show that the associated moduli space is also a toric variety. It is conjectured that the complex balancing state is a global attractor. We prove this for detailed balancing systems whose invariant polyhedron is two-dimensional and bounded.Fil: Craciun, Gheorghe. University of Wisconsin; Estados UnidosFil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Shiu, Anne. University of California at Berkeley; Estados UnidosFil: Sturmfels, Bernd. University of California at Berkeley; Estados UnidosAcademic Press Ltd - Elsevier Science Ltd2009-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/151319Craciun, Gheorghe; Dickenstein, Alicia Marcela; Shiu, Anne; Sturmfels, Bernd; Toric dynamical systems; Academic Press Ltd - Elsevier Science Ltd; Journal Of Symbolic Computation; 44; 11; 5-2009; 1551-15650747-7171CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jsc.2008.08.006info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0747717109000923?via%3Dihubinfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/0708.3431info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:28:25Zoai:ri.conicet.gov.ar:11336/151319instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:28:25.784CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Toric dynamical systems |
title |
Toric dynamical systems |
spellingShingle |
Toric dynamical systems Craciun, Gheorghe CHEMICAL REACTION NETWORK TORIC IDEAL COMPLEX BALANCING DETAILED BALANCING DEFICIENCY ZERO TRAJECTORY BIRCH’S THEOREM MATRIX-TREE THEOREM MODULI SPACE POLYHEDRON |
title_short |
Toric dynamical systems |
title_full |
Toric dynamical systems |
title_fullStr |
Toric dynamical systems |
title_full_unstemmed |
Toric dynamical systems |
title_sort |
Toric dynamical systems |
dc.creator.none.fl_str_mv |
Craciun, Gheorghe Dickenstein, Alicia Marcela Shiu, Anne Sturmfels, Bernd |
author |
Craciun, Gheorghe |
author_facet |
Craciun, Gheorghe Dickenstein, Alicia Marcela Shiu, Anne Sturmfels, Bernd |
author_role |
author |
author2 |
Dickenstein, Alicia Marcela Shiu, Anne Sturmfels, Bernd |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
CHEMICAL REACTION NETWORK TORIC IDEAL COMPLEX BALANCING DETAILED BALANCING DEFICIENCY ZERO TRAJECTORY BIRCH’S THEOREM MATRIX-TREE THEOREM MODULI SPACE POLYHEDRON |
topic |
CHEMICAL REACTION NETWORK TORIC IDEAL COMPLEX BALANCING DETAILED BALANCING DEFICIENCY ZERO TRAJECTORY BIRCH’S THEOREM MATRIX-TREE THEOREM MODULI SPACE POLYHEDRON |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Toric dynamical systems are known as complex balancing mass action systems in the mathematical chemistry literature, where many of their remarkable properties have been established. They include as special cases all deficiency zero systems and all detailed balancing systems. One feature is that the steady state locus of a toric dynamical system is a toric variety, which has a unique point within each invariant polyhedron. We develop the basic theory of toric dynamical systems in the context of computational algebraic geometry and show that the associated moduli space is also a toric variety. It is conjectured that the complex balancing state is a global attractor. We prove this for detailed balancing systems whose invariant polyhedron is two-dimensional and bounded. Fil: Craciun, Gheorghe. University of Wisconsin; Estados Unidos Fil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Shiu, Anne. University of California at Berkeley; Estados Unidos Fil: Sturmfels, Bernd. University of California at Berkeley; Estados Unidos |
description |
Toric dynamical systems are known as complex balancing mass action systems in the mathematical chemistry literature, where many of their remarkable properties have been established. They include as special cases all deficiency zero systems and all detailed balancing systems. One feature is that the steady state locus of a toric dynamical system is a toric variety, which has a unique point within each invariant polyhedron. We develop the basic theory of toric dynamical systems in the context of computational algebraic geometry and show that the associated moduli space is also a toric variety. It is conjectured that the complex balancing state is a global attractor. We prove this for detailed balancing systems whose invariant polyhedron is two-dimensional and bounded. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/151319 Craciun, Gheorghe; Dickenstein, Alicia Marcela; Shiu, Anne; Sturmfels, Bernd; Toric dynamical systems; Academic Press Ltd - Elsevier Science Ltd; Journal Of Symbolic Computation; 44; 11; 5-2009; 1551-1565 0747-7171 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/151319 |
identifier_str_mv |
Craciun, Gheorghe; Dickenstein, Alicia Marcela; Shiu, Anne; Sturmfels, Bernd; Toric dynamical systems; Academic Press Ltd - Elsevier Science Ltd; Journal Of Symbolic Computation; 44; 11; 5-2009; 1551-1565 0747-7171 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jsc.2008.08.006 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0747717109000923?via%3Dihub info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/0708.3431 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Ltd - Elsevier Science Ltd |
publisher.none.fl_str_mv |
Academic Press Ltd - Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083424884883456 |
score |
13.22299 |