Toric dynamical systems

Autores
Craciun, G.; Dickenstein, A.; Shiu, A.; Sturmfels, B.
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Toric dynamical systems are known as complex balancing mass action systems in the mathematical chemistry literature, where many of their remarkable properties have been established. They include as special cases all deficiency zero systems and all detailed balancing systems. One feature is that the steady state locus of a toric dynamical system is a toric variety, which has a unique point within each invariant polyhedron. We develop the basic theory of toric dynamical systems in the context of computational algebraic geometry and show that the associated moduli space is also a toric variety. It is conjectured that the complex balancing state is a global attractor. We prove this for detailed balancing systems whose invariant polyhedron is two-dimensional and bounded. © 2009 Elsevier Ltd. All rights reserved.
Fil:Dickenstein, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Symb. Comput. 2009;44(11):1551-1565
Materia
Birch's Theorem
Chemical reaction network
Complex balancing
Deficiency zero
Detailed balancing
Matrix-tree theorem
Moduli space
Polyhedron
Toric ideal
Trajectory
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_07477171_v44_n11_p1551_Craciun

id BDUBAFCEN_8d873e8bdd78d7649aee8e58d226d1bf
oai_identifier_str paperaa:paper_07477171_v44_n11_p1551_Craciun
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Toric dynamical systemsCraciun, G.Dickenstein, A.Shiu, A.Sturmfels, B.Birch's TheoremChemical reaction networkComplex balancingDeficiency zeroDetailed balancingMatrix-tree theoremModuli spacePolyhedronToric idealTrajectoryToric dynamical systems are known as complex balancing mass action systems in the mathematical chemistry literature, where many of their remarkable properties have been established. They include as special cases all deficiency zero systems and all detailed balancing systems. One feature is that the steady state locus of a toric dynamical system is a toric variety, which has a unique point within each invariant polyhedron. We develop the basic theory of toric dynamical systems in the context of computational algebraic geometry and show that the associated moduli space is also a toric variety. It is conjectured that the complex balancing state is a global attractor. We prove this for detailed balancing systems whose invariant polyhedron is two-dimensional and bounded. © 2009 Elsevier Ltd. All rights reserved.Fil:Dickenstein, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2009info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_07477171_v44_n11_p1551_CraciunJ. Symb. Comput. 2009;44(11):1551-1565reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-11T10:21:21Zpaperaa:paper_07477171_v44_n11_p1551_CraciunInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-11 10:21:22.27Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Toric dynamical systems
title Toric dynamical systems
spellingShingle Toric dynamical systems
Craciun, G.
Birch's Theorem
Chemical reaction network
Complex balancing
Deficiency zero
Detailed balancing
Matrix-tree theorem
Moduli space
Polyhedron
Toric ideal
Trajectory
title_short Toric dynamical systems
title_full Toric dynamical systems
title_fullStr Toric dynamical systems
title_full_unstemmed Toric dynamical systems
title_sort Toric dynamical systems
dc.creator.none.fl_str_mv Craciun, G.
Dickenstein, A.
Shiu, A.
Sturmfels, B.
author Craciun, G.
author_facet Craciun, G.
Dickenstein, A.
Shiu, A.
Sturmfels, B.
author_role author
author2 Dickenstein, A.
Shiu, A.
Sturmfels, B.
author2_role author
author
author
dc.subject.none.fl_str_mv Birch's Theorem
Chemical reaction network
Complex balancing
Deficiency zero
Detailed balancing
Matrix-tree theorem
Moduli space
Polyhedron
Toric ideal
Trajectory
topic Birch's Theorem
Chemical reaction network
Complex balancing
Deficiency zero
Detailed balancing
Matrix-tree theorem
Moduli space
Polyhedron
Toric ideal
Trajectory
dc.description.none.fl_txt_mv Toric dynamical systems are known as complex balancing mass action systems in the mathematical chemistry literature, where many of their remarkable properties have been established. They include as special cases all deficiency zero systems and all detailed balancing systems. One feature is that the steady state locus of a toric dynamical system is a toric variety, which has a unique point within each invariant polyhedron. We develop the basic theory of toric dynamical systems in the context of computational algebraic geometry and show that the associated moduli space is also a toric variety. It is conjectured that the complex balancing state is a global attractor. We prove this for detailed balancing systems whose invariant polyhedron is two-dimensional and bounded. © 2009 Elsevier Ltd. All rights reserved.
Fil:Dickenstein, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description Toric dynamical systems are known as complex balancing mass action systems in the mathematical chemistry literature, where many of their remarkable properties have been established. They include as special cases all deficiency zero systems and all detailed balancing systems. One feature is that the steady state locus of a toric dynamical system is a toric variety, which has a unique point within each invariant polyhedron. We develop the basic theory of toric dynamical systems in the context of computational algebraic geometry and show that the associated moduli space is also a toric variety. It is conjectured that the complex balancing state is a global attractor. We prove this for detailed balancing systems whose invariant polyhedron is two-dimensional and bounded. © 2009 Elsevier Ltd. All rights reserved.
publishDate 2009
dc.date.none.fl_str_mv 2009
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_07477171_v44_n11_p1551_Craciun
url http://hdl.handle.net/20.500.12110/paper_07477171_v44_n11_p1551_Craciun
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Symb. Comput. 2009;44(11):1551-1565
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1842975008617398272
score 12.993085