Toric dynamical systems
- Autores
- Craciun, G.; Dickenstein, A.; Shiu, A.; Sturmfels, B.
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Toric dynamical systems are known as complex balancing mass action systems in the mathematical chemistry literature, where many of their remarkable properties have been established. They include as special cases all deficiency zero systems and all detailed balancing systems. One feature is that the steady state locus of a toric dynamical system is a toric variety, which has a unique point within each invariant polyhedron. We develop the basic theory of toric dynamical systems in the context of computational algebraic geometry and show that the associated moduli space is also a toric variety. It is conjectured that the complex balancing state is a global attractor. We prove this for detailed balancing systems whose invariant polyhedron is two-dimensional and bounded. © 2009 Elsevier Ltd. All rights reserved.
Fil:Dickenstein, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Symb. Comput. 2009;44(11):1551-1565
- Materia
-
Birch's Theorem
Chemical reaction network
Complex balancing
Deficiency zero
Detailed balancing
Matrix-tree theorem
Moduli space
Polyhedron
Toric ideal
Trajectory - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_07477171_v44_n11_p1551_Craciun
Ver los metadatos del registro completo
id |
BDUBAFCEN_8d873e8bdd78d7649aee8e58d226d1bf |
---|---|
oai_identifier_str |
paperaa:paper_07477171_v44_n11_p1551_Craciun |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Toric dynamical systemsCraciun, G.Dickenstein, A.Shiu, A.Sturmfels, B.Birch's TheoremChemical reaction networkComplex balancingDeficiency zeroDetailed balancingMatrix-tree theoremModuli spacePolyhedronToric idealTrajectoryToric dynamical systems are known as complex balancing mass action systems in the mathematical chemistry literature, where many of their remarkable properties have been established. They include as special cases all deficiency zero systems and all detailed balancing systems. One feature is that the steady state locus of a toric dynamical system is a toric variety, which has a unique point within each invariant polyhedron. We develop the basic theory of toric dynamical systems in the context of computational algebraic geometry and show that the associated moduli space is also a toric variety. It is conjectured that the complex balancing state is a global attractor. We prove this for detailed balancing systems whose invariant polyhedron is two-dimensional and bounded. © 2009 Elsevier Ltd. All rights reserved.Fil:Dickenstein, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2009info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_07477171_v44_n11_p1551_CraciunJ. Symb. Comput. 2009;44(11):1551-1565reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-11T10:21:21Zpaperaa:paper_07477171_v44_n11_p1551_CraciunInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-11 10:21:22.27Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Toric dynamical systems |
title |
Toric dynamical systems |
spellingShingle |
Toric dynamical systems Craciun, G. Birch's Theorem Chemical reaction network Complex balancing Deficiency zero Detailed balancing Matrix-tree theorem Moduli space Polyhedron Toric ideal Trajectory |
title_short |
Toric dynamical systems |
title_full |
Toric dynamical systems |
title_fullStr |
Toric dynamical systems |
title_full_unstemmed |
Toric dynamical systems |
title_sort |
Toric dynamical systems |
dc.creator.none.fl_str_mv |
Craciun, G. Dickenstein, A. Shiu, A. Sturmfels, B. |
author |
Craciun, G. |
author_facet |
Craciun, G. Dickenstein, A. Shiu, A. Sturmfels, B. |
author_role |
author |
author2 |
Dickenstein, A. Shiu, A. Sturmfels, B. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Birch's Theorem Chemical reaction network Complex balancing Deficiency zero Detailed balancing Matrix-tree theorem Moduli space Polyhedron Toric ideal Trajectory |
topic |
Birch's Theorem Chemical reaction network Complex balancing Deficiency zero Detailed balancing Matrix-tree theorem Moduli space Polyhedron Toric ideal Trajectory |
dc.description.none.fl_txt_mv |
Toric dynamical systems are known as complex balancing mass action systems in the mathematical chemistry literature, where many of their remarkable properties have been established. They include as special cases all deficiency zero systems and all detailed balancing systems. One feature is that the steady state locus of a toric dynamical system is a toric variety, which has a unique point within each invariant polyhedron. We develop the basic theory of toric dynamical systems in the context of computational algebraic geometry and show that the associated moduli space is also a toric variety. It is conjectured that the complex balancing state is a global attractor. We prove this for detailed balancing systems whose invariant polyhedron is two-dimensional and bounded. © 2009 Elsevier Ltd. All rights reserved. Fil:Dickenstein, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
Toric dynamical systems are known as complex balancing mass action systems in the mathematical chemistry literature, where many of their remarkable properties have been established. They include as special cases all deficiency zero systems and all detailed balancing systems. One feature is that the steady state locus of a toric dynamical system is a toric variety, which has a unique point within each invariant polyhedron. We develop the basic theory of toric dynamical systems in the context of computational algebraic geometry and show that the associated moduli space is also a toric variety. It is conjectured that the complex balancing state is a global attractor. We prove this for detailed balancing systems whose invariant polyhedron is two-dimensional and bounded. © 2009 Elsevier Ltd. All rights reserved. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_07477171_v44_n11_p1551_Craciun |
url |
http://hdl.handle.net/20.500.12110/paper_07477171_v44_n11_p1551_Craciun |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Symb. Comput. 2009;44(11):1551-1565 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1842975008617398272 |
score |
12.993085 |