Chemical Reaction Systems with Toric Steady States
- Autores
- Pérez Millán, Mercedes Soledad; Dickenstein, Alicia Marcela; Shiu, Anne; Conradi, Carsten
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Mass-action chemical reaction systems are frequently used in computational biology. The corresponding polynomial dynamical systems are often large (consisting of tens or even hundreds of ordinary differential equations) and poorly parameterized (due to noisy measurement data and a small number of data points and repetitions). Therefore, it is often difficult to establish the existence of (positive) steady states or to determine whether more complicated phenomena such as multistationarity exist. If, however, the steady state ideal of the system is a binomial ideal, then we show that these questions can be answered easily. The focus of this work is on systems with this property, and we say that such systems have toric steady states. Our main result gives sufficient conditions for a chemical reaction system to have toric steady states. Furthermore, we analyze the capacity of such a system to exhibit positive steady states and multistationarity. Examples of systems with toric steady states include weakly-reversible zero-deficiency chemical reaction systems. An important application of our work concerns the networks that describe the multisite phosphorylation of a protein by a kinase/phosphatase pair in a sequential and distributive mechanism.
Fil: Pérez Millán, Mercedes Soledad. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Shiu, Anne. University of Duke; Estados Unidos
Fil: Conradi, Carsten. Max Planck Institut Dynamik komplexer technischer Systeme; Alemania - Materia
-
Chemical Reaction Network
Binomial Ideal
Steady State
Multistationarity - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19942
Ver los metadatos del registro completo
id |
CONICETDig_98dff8f3a39394e77471c38be5a8649d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19942 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Chemical Reaction Systems with Toric Steady StatesPérez Millán, Mercedes SoledadDickenstein, Alicia MarcelaShiu, AnneConradi, CarstenChemical Reaction NetworkBinomial IdealSteady StateMultistationarityhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Mass-action chemical reaction systems are frequently used in computational biology. The corresponding polynomial dynamical systems are often large (consisting of tens or even hundreds of ordinary differential equations) and poorly parameterized (due to noisy measurement data and a small number of data points and repetitions). Therefore, it is often difficult to establish the existence of (positive) steady states or to determine whether more complicated phenomena such as multistationarity exist. If, however, the steady state ideal of the system is a binomial ideal, then we show that these questions can be answered easily. The focus of this work is on systems with this property, and we say that such systems have toric steady states. Our main result gives sufficient conditions for a chemical reaction system to have toric steady states. Furthermore, we analyze the capacity of such a system to exhibit positive steady states and multistationarity. Examples of systems with toric steady states include weakly-reversible zero-deficiency chemical reaction systems. An important application of our work concerns the networks that describe the multisite phosphorylation of a protein by a kinase/phosphatase pair in a sequential and distributive mechanism.Fil: Pérez Millán, Mercedes Soledad. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Shiu, Anne. University of Duke; Estados UnidosFil: Conradi, Carsten. Max Planck Institut Dynamik komplexer technischer Systeme; AlemaniaSpringer2012-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19942Pérez Millán, Mercedes Soledad; Dickenstein, Alicia Marcela; Shiu, Anne; Conradi, Carsten; Chemical Reaction Systems with Toric Steady States; Springer; Bulletin Of Mathematical Biology; 74; 5; 5-2012; 1027-10650092-82401522-9602CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11538-011-9685-xinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11538-011-9685-xinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1102.1590info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:31:04Zoai:ri.conicet.gov.ar:11336/19942instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:31:04.737CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Chemical Reaction Systems with Toric Steady States |
title |
Chemical Reaction Systems with Toric Steady States |
spellingShingle |
Chemical Reaction Systems with Toric Steady States Pérez Millán, Mercedes Soledad Chemical Reaction Network Binomial Ideal Steady State Multistationarity |
title_short |
Chemical Reaction Systems with Toric Steady States |
title_full |
Chemical Reaction Systems with Toric Steady States |
title_fullStr |
Chemical Reaction Systems with Toric Steady States |
title_full_unstemmed |
Chemical Reaction Systems with Toric Steady States |
title_sort |
Chemical Reaction Systems with Toric Steady States |
dc.creator.none.fl_str_mv |
Pérez Millán, Mercedes Soledad Dickenstein, Alicia Marcela Shiu, Anne Conradi, Carsten |
author |
Pérez Millán, Mercedes Soledad |
author_facet |
Pérez Millán, Mercedes Soledad Dickenstein, Alicia Marcela Shiu, Anne Conradi, Carsten |
author_role |
author |
author2 |
Dickenstein, Alicia Marcela Shiu, Anne Conradi, Carsten |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Chemical Reaction Network Binomial Ideal Steady State Multistationarity |
topic |
Chemical Reaction Network Binomial Ideal Steady State Multistationarity |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Mass-action chemical reaction systems are frequently used in computational biology. The corresponding polynomial dynamical systems are often large (consisting of tens or even hundreds of ordinary differential equations) and poorly parameterized (due to noisy measurement data and a small number of data points and repetitions). Therefore, it is often difficult to establish the existence of (positive) steady states or to determine whether more complicated phenomena such as multistationarity exist. If, however, the steady state ideal of the system is a binomial ideal, then we show that these questions can be answered easily. The focus of this work is on systems with this property, and we say that such systems have toric steady states. Our main result gives sufficient conditions for a chemical reaction system to have toric steady states. Furthermore, we analyze the capacity of such a system to exhibit positive steady states and multistationarity. Examples of systems with toric steady states include weakly-reversible zero-deficiency chemical reaction systems. An important application of our work concerns the networks that describe the multisite phosphorylation of a protein by a kinase/phosphatase pair in a sequential and distributive mechanism. Fil: Pérez Millán, Mercedes Soledad. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Shiu, Anne. University of Duke; Estados Unidos Fil: Conradi, Carsten. Max Planck Institut Dynamik komplexer technischer Systeme; Alemania |
description |
Mass-action chemical reaction systems are frequently used in computational biology. The corresponding polynomial dynamical systems are often large (consisting of tens or even hundreds of ordinary differential equations) and poorly parameterized (due to noisy measurement data and a small number of data points and repetitions). Therefore, it is often difficult to establish the existence of (positive) steady states or to determine whether more complicated phenomena such as multistationarity exist. If, however, the steady state ideal of the system is a binomial ideal, then we show that these questions can be answered easily. The focus of this work is on systems with this property, and we say that such systems have toric steady states. Our main result gives sufficient conditions for a chemical reaction system to have toric steady states. Furthermore, we analyze the capacity of such a system to exhibit positive steady states and multistationarity. Examples of systems with toric steady states include weakly-reversible zero-deficiency chemical reaction systems. An important application of our work concerns the networks that describe the multisite phosphorylation of a protein by a kinase/phosphatase pair in a sequential and distributive mechanism. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19942 Pérez Millán, Mercedes Soledad; Dickenstein, Alicia Marcela; Shiu, Anne; Conradi, Carsten; Chemical Reaction Systems with Toric Steady States; Springer; Bulletin Of Mathematical Biology; 74; 5; 5-2012; 1027-1065 0092-8240 1522-9602 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19942 |
identifier_str_mv |
Pérez Millán, Mercedes Soledad; Dickenstein, Alicia Marcela; Shiu, Anne; Conradi, Carsten; Chemical Reaction Systems with Toric Steady States; Springer; Bulletin Of Mathematical Biology; 74; 5; 5-2012; 1027-1065 0092-8240 1522-9602 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11538-011-9685-x info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11538-011-9685-x info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1102.1590 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614320280829952 |
score |
13.070432 |