Reactive molecular dynamics simulations of hydration shells surrounding spherical TiO 2 nanoparticles: Implications for proton-transfer reactions
- Autores
- Soria, Federico Ariel; Di Valentin, Cristiana
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In many potential applications, nanoparticles are typically in an aqueous medium. This has strong influence on the stability, optical properties and reactivity, in particular for their functionalization. Therefore, the understanding of the chemistry at the interface between the solvent and the nanoparticle is of utmost importance. In this work, we present a comparative ReaxFF reactive molecular dynamics investigation on spherical TiO2 nanoparticles (NSs) of realistic size, with diameters from 2.2 to 4.4 nm, immersed in a large drop of bulk water. After force field validation for its use for a curved anatase TiO2 surface/water interface, we performed several simulations of the TiO2 nanoparticles of increasing size in a water drop. We found that water can be adsorbed jointly in a molecular and dissociative way on the surface. A Langmuir isotherm indicating an adsorption/desorption mechanism of water on the NS is observed. Regarding the dissociative adsorption, atomistic details reveal two different mechanisms, depending on the water concentration around the NS. At low coverage, the first mechanism involves direct dissociation of a single water molecule, whereas, at higher water coverage, the second mechanism is a proton transfer reaction involving two water molecules, also known as Grotthuss-like mechanism. Thermal annealing simulations show that several water molecules remain on the surface in agreement with the experimental reports. The capacity of adsorption is higher for the 2.2 and 3.0 nm NSs than for the 4.4 nm NS. Finally, a comparative investigation with flat surfaces indicates that NSs present a higher water adsorption capacity (undissociated and dissociated) than flat surfaces, which can be rationalized considering that NSs present many more low-coordinated Ti atoms available for water adsorption. This journal is.
Fil: Soria, Federico Ariel. Universita Di Milano Bicocca; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Di Valentin, Cristiana. Università Di Milano Bicocca; Italia - Materia
-
TiO2
WATER
REAXFF
REACTIVITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/172912
Ver los metadatos del registro completo
id |
CONICETDig_92dd30bf2950065a1af685bcdea362aa |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/172912 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Reactive molecular dynamics simulations of hydration shells surrounding spherical TiO 2 nanoparticles: Implications for proton-transfer reactionsSoria, Federico ArielDi Valentin, CristianaTiO2WATERREAXFFREACTIVITYhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1In many potential applications, nanoparticles are typically in an aqueous medium. This has strong influence on the stability, optical properties and reactivity, in particular for their functionalization. Therefore, the understanding of the chemistry at the interface between the solvent and the nanoparticle is of utmost importance. In this work, we present a comparative ReaxFF reactive molecular dynamics investigation on spherical TiO2 nanoparticles (NSs) of realistic size, with diameters from 2.2 to 4.4 nm, immersed in a large drop of bulk water. After force field validation for its use for a curved anatase TiO2 surface/water interface, we performed several simulations of the TiO2 nanoparticles of increasing size in a water drop. We found that water can be adsorbed jointly in a molecular and dissociative way on the surface. A Langmuir isotherm indicating an adsorption/desorption mechanism of water on the NS is observed. Regarding the dissociative adsorption, atomistic details reveal two different mechanisms, depending on the water concentration around the NS. At low coverage, the first mechanism involves direct dissociation of a single water molecule, whereas, at higher water coverage, the second mechanism is a proton transfer reaction involving two water molecules, also known as Grotthuss-like mechanism. Thermal annealing simulations show that several water molecules remain on the surface in agreement with the experimental reports. The capacity of adsorption is higher for the 2.2 and 3.0 nm NSs than for the 4.4 nm NS. Finally, a comparative investigation with flat surfaces indicates that NSs present a higher water adsorption capacity (undissociated and dissociated) than flat surfaces, which can be rationalized considering that NSs present many more low-coordinated Ti atoms available for water adsorption. This journal is.Fil: Soria, Federico Ariel. Universita Di Milano Bicocca; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Di Valentin, Cristiana. Università Di Milano Bicocca; ItaliaRoyal Society of Chemistry2021-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/172912Soria, Federico Ariel; Di Valentin, Cristiana; Reactive molecular dynamics simulations of hydration shells surrounding spherical TiO 2 nanoparticles: Implications for proton-transfer reactions; Royal Society of Chemistry; Nanoscale; 13; 7; 2-2021; 4151-41662040-33642040-3372CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2021/NR/D0NR07503Einfo:eu-repo/semantics/altIdentifier/doi/10.1039/D0NR07503Einfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:49Zoai:ri.conicet.gov.ar:11336/172912instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:49.902CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Reactive molecular dynamics simulations of hydration shells surrounding spherical TiO 2 nanoparticles: Implications for proton-transfer reactions |
title |
Reactive molecular dynamics simulations of hydration shells surrounding spherical TiO 2 nanoparticles: Implications for proton-transfer reactions |
spellingShingle |
Reactive molecular dynamics simulations of hydration shells surrounding spherical TiO 2 nanoparticles: Implications for proton-transfer reactions Soria, Federico Ariel TiO2 WATER REAXFF REACTIVITY |
title_short |
Reactive molecular dynamics simulations of hydration shells surrounding spherical TiO 2 nanoparticles: Implications for proton-transfer reactions |
title_full |
Reactive molecular dynamics simulations of hydration shells surrounding spherical TiO 2 nanoparticles: Implications for proton-transfer reactions |
title_fullStr |
Reactive molecular dynamics simulations of hydration shells surrounding spherical TiO 2 nanoparticles: Implications for proton-transfer reactions |
title_full_unstemmed |
Reactive molecular dynamics simulations of hydration shells surrounding spherical TiO 2 nanoparticles: Implications for proton-transfer reactions |
title_sort |
Reactive molecular dynamics simulations of hydration shells surrounding spherical TiO 2 nanoparticles: Implications for proton-transfer reactions |
dc.creator.none.fl_str_mv |
Soria, Federico Ariel Di Valentin, Cristiana |
author |
Soria, Federico Ariel |
author_facet |
Soria, Federico Ariel Di Valentin, Cristiana |
author_role |
author |
author2 |
Di Valentin, Cristiana |
author2_role |
author |
dc.subject.none.fl_str_mv |
TiO2 WATER REAXFF REACTIVITY |
topic |
TiO2 WATER REAXFF REACTIVITY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In many potential applications, nanoparticles are typically in an aqueous medium. This has strong influence on the stability, optical properties and reactivity, in particular for their functionalization. Therefore, the understanding of the chemistry at the interface between the solvent and the nanoparticle is of utmost importance. In this work, we present a comparative ReaxFF reactive molecular dynamics investigation on spherical TiO2 nanoparticles (NSs) of realistic size, with diameters from 2.2 to 4.4 nm, immersed in a large drop of bulk water. After force field validation for its use for a curved anatase TiO2 surface/water interface, we performed several simulations of the TiO2 nanoparticles of increasing size in a water drop. We found that water can be adsorbed jointly in a molecular and dissociative way on the surface. A Langmuir isotherm indicating an adsorption/desorption mechanism of water on the NS is observed. Regarding the dissociative adsorption, atomistic details reveal two different mechanisms, depending on the water concentration around the NS. At low coverage, the first mechanism involves direct dissociation of a single water molecule, whereas, at higher water coverage, the second mechanism is a proton transfer reaction involving two water molecules, also known as Grotthuss-like mechanism. Thermal annealing simulations show that several water molecules remain on the surface in agreement with the experimental reports. The capacity of adsorption is higher for the 2.2 and 3.0 nm NSs than for the 4.4 nm NS. Finally, a comparative investigation with flat surfaces indicates that NSs present a higher water adsorption capacity (undissociated and dissociated) than flat surfaces, which can be rationalized considering that NSs present many more low-coordinated Ti atoms available for water adsorption. This journal is. Fil: Soria, Federico Ariel. Universita Di Milano Bicocca; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina Fil: Di Valentin, Cristiana. Università Di Milano Bicocca; Italia |
description |
In many potential applications, nanoparticles are typically in an aqueous medium. This has strong influence on the stability, optical properties and reactivity, in particular for their functionalization. Therefore, the understanding of the chemistry at the interface between the solvent and the nanoparticle is of utmost importance. In this work, we present a comparative ReaxFF reactive molecular dynamics investigation on spherical TiO2 nanoparticles (NSs) of realistic size, with diameters from 2.2 to 4.4 nm, immersed in a large drop of bulk water. After force field validation for its use for a curved anatase TiO2 surface/water interface, we performed several simulations of the TiO2 nanoparticles of increasing size in a water drop. We found that water can be adsorbed jointly in a molecular and dissociative way on the surface. A Langmuir isotherm indicating an adsorption/desorption mechanism of water on the NS is observed. Regarding the dissociative adsorption, atomistic details reveal two different mechanisms, depending on the water concentration around the NS. At low coverage, the first mechanism involves direct dissociation of a single water molecule, whereas, at higher water coverage, the second mechanism is a proton transfer reaction involving two water molecules, also known as Grotthuss-like mechanism. Thermal annealing simulations show that several water molecules remain on the surface in agreement with the experimental reports. The capacity of adsorption is higher for the 2.2 and 3.0 nm NSs than for the 4.4 nm NS. Finally, a comparative investigation with flat surfaces indicates that NSs present a higher water adsorption capacity (undissociated and dissociated) than flat surfaces, which can be rationalized considering that NSs present many more low-coordinated Ti atoms available for water adsorption. This journal is. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/172912 Soria, Federico Ariel; Di Valentin, Cristiana; Reactive molecular dynamics simulations of hydration shells surrounding spherical TiO 2 nanoparticles: Implications for proton-transfer reactions; Royal Society of Chemistry; Nanoscale; 13; 7; 2-2021; 4151-4166 2040-3364 2040-3372 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/172912 |
identifier_str_mv |
Soria, Federico Ariel; Di Valentin, Cristiana; Reactive molecular dynamics simulations of hydration shells surrounding spherical TiO 2 nanoparticles: Implications for proton-transfer reactions; Royal Society of Chemistry; Nanoscale; 13; 7; 2-2021; 4151-4166 2040-3364 2040-3372 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2021/NR/D0NR07503E info:eu-repo/semantics/altIdentifier/doi/10.1039/D0NR07503E |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Royal Society of Chemistry |
publisher.none.fl_str_mv |
Royal Society of Chemistry |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269056091029504 |
score |
13.13397 |