Thermal Stability of Organic Monolayers Grafted to Si(111): Insights from ReaxFF Reactive Molecular Dynamics Simulations

Autores
Soria, Federico Ariel; Zhang, Weiwei; van Duin, Adri; Patrito, Eduardo Martin
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We used the ReaxFF reactive molecular dynamics simulations to investigate the chemical mechanisms and kinetics of thermal decomposition processes of silicon surfaces grafted with different organic molecules via Si-C bonds at atomistic level. In this work, we considered the Si(111) surface grafted with n-alkyl (ethyl, propyl, pentyl, and decyl) layers in 50% coverage and, Si-CH3, Si-CCCH3 and Si-CHCHCH3 layers in full coverage. Si radicals primarily formed by the homolytic cleavage of Si-C bonds play a key role in the dehydrogenation processes that lead to the decomposition of the monolayers. Contrary to commonly proposed mechanisms that only involve a single Si atom center, we found that the main decomposition pathways require two Si lattice atoms to proceed. The ability of surface silyl radicals to dehydrogenate the organic molecules depends on the flexibility of the carbon backbones of the organic molecules as well as on the C-H bond strength. The dehydrogenation of n-alkyl chains mainly involves the H atoms of the β-carbon (leading to 1-alkene desorption). However, as the surface coverage decreases, the flexibility of the alkyl chains allows for the dehydrogenation of any methylene group and even the terminal methyl group of the long decyl layer. On the contrary, the rigid carbon backbone of the Si-CCCH3 and Si-CHCHCH3 moieties hinders the dehydrogenation of the terminal methyl group, which confers these layers a higher thermal stability. For all layers, the surface ends up mostly hydrogenated as Si-C bonds break and new Si-H bonds are formed during the dehydrogenation reactions.
Fil: Soria, Federico Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Zhang, Weiwei. State University of Pennsylvania; Estados Unidos
Fil: van Duin, Adri. State University of Pennsylvania; Estados Unidos
Fil: Patrito, Eduardo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Materia
Functionalization
Molecular Dynamics
Organic Monolayer
Reaxff
Silicon
Thermal Stability
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/63993

id CONICETDig_f08240e7c2bbb0383bf743ac391e08c9
oai_identifier_str oai:ri.conicet.gov.ar:11336/63993
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Thermal Stability of Organic Monolayers Grafted to Si(111): Insights from ReaxFF Reactive Molecular Dynamics SimulationsSoria, Federico ArielZhang, Weiweivan Duin, AdriPatrito, Eduardo MartinFunctionalizationMolecular DynamicsOrganic MonolayerReaxffSiliconThermal Stabilityhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1We used the ReaxFF reactive molecular dynamics simulations to investigate the chemical mechanisms and kinetics of thermal decomposition processes of silicon surfaces grafted with different organic molecules via Si-C bonds at atomistic level. In this work, we considered the Si(111) surface grafted with n-alkyl (ethyl, propyl, pentyl, and decyl) layers in 50% coverage and, Si-CH3, Si-CCCH3 and Si-CHCHCH3 layers in full coverage. Si radicals primarily formed by the homolytic cleavage of Si-C bonds play a key role in the dehydrogenation processes that lead to the decomposition of the monolayers. Contrary to commonly proposed mechanisms that only involve a single Si atom center, we found that the main decomposition pathways require two Si lattice atoms to proceed. The ability of surface silyl radicals to dehydrogenate the organic molecules depends on the flexibility of the carbon backbones of the organic molecules as well as on the C-H bond strength. The dehydrogenation of n-alkyl chains mainly involves the H atoms of the β-carbon (leading to 1-alkene desorption). However, as the surface coverage decreases, the flexibility of the alkyl chains allows for the dehydrogenation of any methylene group and even the terminal methyl group of the long decyl layer. On the contrary, the rigid carbon backbone of the Si-CCCH3 and Si-CHCHCH3 moieties hinders the dehydrogenation of the terminal methyl group, which confers these layers a higher thermal stability. For all layers, the surface ends up mostly hydrogenated as Si-C bonds break and new Si-H bonds are formed during the dehydrogenation reactions.Fil: Soria, Federico Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Zhang, Weiwei. State University of Pennsylvania; Estados UnidosFil: van Duin, Adri. State University of Pennsylvania; Estados UnidosFil: Patrito, Eduardo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaAmerican Chemical Society2017-09-16info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/63993Soria, Federico Ariel; Zhang, Weiwei; van Duin, Adri; Patrito, Eduardo Martin; Thermal Stability of Organic Monolayers Grafted to Si(111): Insights from ReaxFF Reactive Molecular Dynamics Simulations; American Chemical Society; ACS Applied Materials & Interfaces; 9; 36; 16-9-2017; 30969-309811944-82441944-8252CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/acsami.7b05444info:eu-repo/semantics/altIdentifier/doi/10.1021/acsami.7b05444info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:35Zoai:ri.conicet.gov.ar:11336/63993instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:36.237CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Thermal Stability of Organic Monolayers Grafted to Si(111): Insights from ReaxFF Reactive Molecular Dynamics Simulations
title Thermal Stability of Organic Monolayers Grafted to Si(111): Insights from ReaxFF Reactive Molecular Dynamics Simulations
spellingShingle Thermal Stability of Organic Monolayers Grafted to Si(111): Insights from ReaxFF Reactive Molecular Dynamics Simulations
Soria, Federico Ariel
Functionalization
Molecular Dynamics
Organic Monolayer
Reaxff
Silicon
Thermal Stability
title_short Thermal Stability of Organic Monolayers Grafted to Si(111): Insights from ReaxFF Reactive Molecular Dynamics Simulations
title_full Thermal Stability of Organic Monolayers Grafted to Si(111): Insights from ReaxFF Reactive Molecular Dynamics Simulations
title_fullStr Thermal Stability of Organic Monolayers Grafted to Si(111): Insights from ReaxFF Reactive Molecular Dynamics Simulations
title_full_unstemmed Thermal Stability of Organic Monolayers Grafted to Si(111): Insights from ReaxFF Reactive Molecular Dynamics Simulations
title_sort Thermal Stability of Organic Monolayers Grafted to Si(111): Insights from ReaxFF Reactive Molecular Dynamics Simulations
dc.creator.none.fl_str_mv Soria, Federico Ariel
Zhang, Weiwei
van Duin, Adri
Patrito, Eduardo Martin
author Soria, Federico Ariel
author_facet Soria, Federico Ariel
Zhang, Weiwei
van Duin, Adri
Patrito, Eduardo Martin
author_role author
author2 Zhang, Weiwei
van Duin, Adri
Patrito, Eduardo Martin
author2_role author
author
author
dc.subject.none.fl_str_mv Functionalization
Molecular Dynamics
Organic Monolayer
Reaxff
Silicon
Thermal Stability
topic Functionalization
Molecular Dynamics
Organic Monolayer
Reaxff
Silicon
Thermal Stability
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We used the ReaxFF reactive molecular dynamics simulations to investigate the chemical mechanisms and kinetics of thermal decomposition processes of silicon surfaces grafted with different organic molecules via Si-C bonds at atomistic level. In this work, we considered the Si(111) surface grafted with n-alkyl (ethyl, propyl, pentyl, and decyl) layers in 50% coverage and, Si-CH3, Si-CCCH3 and Si-CHCHCH3 layers in full coverage. Si radicals primarily formed by the homolytic cleavage of Si-C bonds play a key role in the dehydrogenation processes that lead to the decomposition of the monolayers. Contrary to commonly proposed mechanisms that only involve a single Si atom center, we found that the main decomposition pathways require two Si lattice atoms to proceed. The ability of surface silyl radicals to dehydrogenate the organic molecules depends on the flexibility of the carbon backbones of the organic molecules as well as on the C-H bond strength. The dehydrogenation of n-alkyl chains mainly involves the H atoms of the β-carbon (leading to 1-alkene desorption). However, as the surface coverage decreases, the flexibility of the alkyl chains allows for the dehydrogenation of any methylene group and even the terminal methyl group of the long decyl layer. On the contrary, the rigid carbon backbone of the Si-CCCH3 and Si-CHCHCH3 moieties hinders the dehydrogenation of the terminal methyl group, which confers these layers a higher thermal stability. For all layers, the surface ends up mostly hydrogenated as Si-C bonds break and new Si-H bonds are formed during the dehydrogenation reactions.
Fil: Soria, Federico Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Zhang, Weiwei. State University of Pennsylvania; Estados Unidos
Fil: van Duin, Adri. State University of Pennsylvania; Estados Unidos
Fil: Patrito, Eduardo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
description We used the ReaxFF reactive molecular dynamics simulations to investigate the chemical mechanisms and kinetics of thermal decomposition processes of silicon surfaces grafted with different organic molecules via Si-C bonds at atomistic level. In this work, we considered the Si(111) surface grafted with n-alkyl (ethyl, propyl, pentyl, and decyl) layers in 50% coverage and, Si-CH3, Si-CCCH3 and Si-CHCHCH3 layers in full coverage. Si radicals primarily formed by the homolytic cleavage of Si-C bonds play a key role in the dehydrogenation processes that lead to the decomposition of the monolayers. Contrary to commonly proposed mechanisms that only involve a single Si atom center, we found that the main decomposition pathways require two Si lattice atoms to proceed. The ability of surface silyl radicals to dehydrogenate the organic molecules depends on the flexibility of the carbon backbones of the organic molecules as well as on the C-H bond strength. The dehydrogenation of n-alkyl chains mainly involves the H atoms of the β-carbon (leading to 1-alkene desorption). However, as the surface coverage decreases, the flexibility of the alkyl chains allows for the dehydrogenation of any methylene group and even the terminal methyl group of the long decyl layer. On the contrary, the rigid carbon backbone of the Si-CCCH3 and Si-CHCHCH3 moieties hinders the dehydrogenation of the terminal methyl group, which confers these layers a higher thermal stability. For all layers, the surface ends up mostly hydrogenated as Si-C bonds break and new Si-H bonds are formed during the dehydrogenation reactions.
publishDate 2017
dc.date.none.fl_str_mv 2017-09-16
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/63993
Soria, Federico Ariel; Zhang, Weiwei; van Duin, Adri; Patrito, Eduardo Martin; Thermal Stability of Organic Monolayers Grafted to Si(111): Insights from ReaxFF Reactive Molecular Dynamics Simulations; American Chemical Society; ACS Applied Materials & Interfaces; 9; 36; 16-9-2017; 30969-30981
1944-8244
1944-8252
CONICET Digital
CONICET
url http://hdl.handle.net/11336/63993
identifier_str_mv Soria, Federico Ariel; Zhang, Weiwei; van Duin, Adri; Patrito, Eduardo Martin; Thermal Stability of Organic Monolayers Grafted to Si(111): Insights from ReaxFF Reactive Molecular Dynamics Simulations; American Chemical Society; ACS Applied Materials & Interfaces; 9; 36; 16-9-2017; 30969-30981
1944-8244
1944-8252
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/acsami.7b05444
info:eu-repo/semantics/altIdentifier/doi/10.1021/acsami.7b05444
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269169610915840
score 13.13397