A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem
- Autores
- Armentano, Maria Gabriela; Moreno, Verónica
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we obtain a priori and a posteriori error estimates for stabilized low-order mixed finite element methods for the Stokes eigenvalue problem. We prove the convergence of the method and a priori error estimates for the eigenfunctions and the eigenvalues. We define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove that, up to higher order terms, the estimator is equivalent to the energy norm of the error. We also present some numerical tests which show the performance of the adaptive scheme.
Fil: Armentano, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Moreno, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
A POSTERIORI ERROR ESTIMATES
STABILIZED MIXED METHODS
STOKES EIGENVALUE PROBLEM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/85094
Ver los metadatos del registro completo
id |
CONICETDig_92a4fac050b901acabe45955852f8997 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/85094 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problemArmentano, Maria GabrielaMoreno, VerónicaA POSTERIORI ERROR ESTIMATESSTABILIZED MIXED METHODSSTOKES EIGENVALUE PROBLEMhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we obtain a priori and a posteriori error estimates for stabilized low-order mixed finite element methods for the Stokes eigenvalue problem. We prove the convergence of the method and a priori error estimates for the eigenfunctions and the eigenvalues. We define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove that, up to higher order terms, the estimator is equivalent to the energy norm of the error. We also present some numerical tests which show the performance of the adaptive scheme.Fil: Armentano, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Moreno, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaElsevier Science2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/85094Armentano, Maria Gabriela; Moreno, Verónica; A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem; Elsevier Science; Journal Of Computational And Applied Mathematics; 269; 10-2014; 132-1490377-0427CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0377042714001769info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cam.2014.03.027info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:24:38Zoai:ri.conicet.gov.ar:11336/85094instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:24:39.113CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem |
title |
A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem |
spellingShingle |
A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem Armentano, Maria Gabriela A POSTERIORI ERROR ESTIMATES STABILIZED MIXED METHODS STOKES EIGENVALUE PROBLEM |
title_short |
A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem |
title_full |
A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem |
title_fullStr |
A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem |
title_full_unstemmed |
A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem |
title_sort |
A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem |
dc.creator.none.fl_str_mv |
Armentano, Maria Gabriela Moreno, Verónica |
author |
Armentano, Maria Gabriela |
author_facet |
Armentano, Maria Gabriela Moreno, Verónica |
author_role |
author |
author2 |
Moreno, Verónica |
author2_role |
author |
dc.subject.none.fl_str_mv |
A POSTERIORI ERROR ESTIMATES STABILIZED MIXED METHODS STOKES EIGENVALUE PROBLEM |
topic |
A POSTERIORI ERROR ESTIMATES STABILIZED MIXED METHODS STOKES EIGENVALUE PROBLEM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we obtain a priori and a posteriori error estimates for stabilized low-order mixed finite element methods for the Stokes eigenvalue problem. We prove the convergence of the method and a priori error estimates for the eigenfunctions and the eigenvalues. We define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove that, up to higher order terms, the estimator is equivalent to the energy norm of the error. We also present some numerical tests which show the performance of the adaptive scheme. Fil: Armentano, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Moreno, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
In this paper we obtain a priori and a posteriori error estimates for stabilized low-order mixed finite element methods for the Stokes eigenvalue problem. We prove the convergence of the method and a priori error estimates for the eigenfunctions and the eigenvalues. We define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove that, up to higher order terms, the estimator is equivalent to the energy norm of the error. We also present some numerical tests which show the performance of the adaptive scheme. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/85094 Armentano, Maria Gabriela; Moreno, Verónica; A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem; Elsevier Science; Journal Of Computational And Applied Mathematics; 269; 10-2014; 132-149 0377-0427 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/85094 |
identifier_str_mv |
Armentano, Maria Gabriela; Moreno, Verónica; A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem; Elsevier Science; Journal Of Computational And Applied Mathematics; 269; 10-2014; 132-149 0377-0427 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0377042714001769 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cam.2014.03.027 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083392891781120 |
score |
13.22299 |