A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem

Autores
Armentano, Maria Gabriela; Moreno, Verónica
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we obtain a priori and a posteriori error estimates for stabilized low-order mixed finite element methods for the Stokes eigenvalue problem. We prove the convergence of the method and a priori error estimates for the eigenfunctions and the eigenvalues. We define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove that, up to higher order terms, the estimator is equivalent to the energy norm of the error. We also present some numerical tests which show the performance of the adaptive scheme.
Fil: Armentano, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Moreno, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
A POSTERIORI ERROR ESTIMATES
STABILIZED MIXED METHODS
STOKES EIGENVALUE PROBLEM
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/85094

id CONICETDig_92a4fac050b901acabe45955852f8997
oai_identifier_str oai:ri.conicet.gov.ar:11336/85094
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problemArmentano, Maria GabrielaMoreno, VerónicaA POSTERIORI ERROR ESTIMATESSTABILIZED MIXED METHODSSTOKES EIGENVALUE PROBLEMhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we obtain a priori and a posteriori error estimates for stabilized low-order mixed finite element methods for the Stokes eigenvalue problem. We prove the convergence of the method and a priori error estimates for the eigenfunctions and the eigenvalues. We define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove that, up to higher order terms, the estimator is equivalent to the energy norm of the error. We also present some numerical tests which show the performance of the adaptive scheme.Fil: Armentano, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Moreno, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaElsevier Science2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/85094Armentano, Maria Gabriela; Moreno, Verónica; A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem; Elsevier Science; Journal Of Computational And Applied Mathematics; 269; 10-2014; 132-1490377-0427CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0377042714001769info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cam.2014.03.027info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:24:38Zoai:ri.conicet.gov.ar:11336/85094instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:24:39.113CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem
title A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem
spellingShingle A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem
Armentano, Maria Gabriela
A POSTERIORI ERROR ESTIMATES
STABILIZED MIXED METHODS
STOKES EIGENVALUE PROBLEM
title_short A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem
title_full A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem
title_fullStr A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem
title_full_unstemmed A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem
title_sort A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem
dc.creator.none.fl_str_mv Armentano, Maria Gabriela
Moreno, Verónica
author Armentano, Maria Gabriela
author_facet Armentano, Maria Gabriela
Moreno, Verónica
author_role author
author2 Moreno, Verónica
author2_role author
dc.subject.none.fl_str_mv A POSTERIORI ERROR ESTIMATES
STABILIZED MIXED METHODS
STOKES EIGENVALUE PROBLEM
topic A POSTERIORI ERROR ESTIMATES
STABILIZED MIXED METHODS
STOKES EIGENVALUE PROBLEM
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we obtain a priori and a posteriori error estimates for stabilized low-order mixed finite element methods for the Stokes eigenvalue problem. We prove the convergence of the method and a priori error estimates for the eigenfunctions and the eigenvalues. We define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove that, up to higher order terms, the estimator is equivalent to the energy norm of the error. We also present some numerical tests which show the performance of the adaptive scheme.
Fil: Armentano, Maria Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Moreno, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description In this paper we obtain a priori and a posteriori error estimates for stabilized low-order mixed finite element methods for the Stokes eigenvalue problem. We prove the convergence of the method and a priori error estimates for the eigenfunctions and the eigenvalues. We define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove that, up to higher order terms, the estimator is equivalent to the energy norm of the error. We also present some numerical tests which show the performance of the adaptive scheme.
publishDate 2014
dc.date.none.fl_str_mv 2014-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/85094
Armentano, Maria Gabriela; Moreno, Verónica; A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem; Elsevier Science; Journal Of Computational And Applied Mathematics; 269; 10-2014; 132-149
0377-0427
CONICET Digital
CONICET
url http://hdl.handle.net/11336/85094
identifier_str_mv Armentano, Maria Gabriela; Moreno, Verónica; A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem; Elsevier Science; Journal Of Computational And Applied Mathematics; 269; 10-2014; 132-149
0377-0427
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0377042714001769
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cam.2014.03.027
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083392891781120
score 13.22299