A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems
- Autores
- Dello Russo, Anahí; Alonso, Ana Esther
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper deals with a posteriori error estimators for the non conforming CrouzeixRaviart finite element approximations of the Steklov eigenvalue problem. First, we define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove the equivalence between this estimator and the broken energy norm of the error with constants independent of the corresponding eigenvalue. Next, we prove that edge residuals dominate the volumetric part of the residual and that the volumetric part of the residual terms dominate the normal component of the jumps of the discrete fluxes across interior edges. Finally, based on these results, we introduce two simpler equivalent error estimators. The analysis shows that these a posteriori error estimates are optimal up to higher order terms and that may be used for the design of adaptive algorithms.
Facultad de Ciencias Exactas - Materia
-
Matemática
A posteriori error estimates
Nonconforming finite element methods
Steklov eigenvalue problem - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/84137
Ver los metadatos del registro completo
id |
SEDICI_c1263dc18ad861204cb8d32dc71f3dcb |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/84137 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problemsDello Russo, AnahíAlonso, Ana EstherMatemáticaA posteriori error estimatesNonconforming finite element methodsSteklov eigenvalue problemThis paper deals with a posteriori error estimators for the non conforming CrouzeixRaviart finite element approximations of the Steklov eigenvalue problem. First, we define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove the equivalence between this estimator and the broken energy norm of the error with constants independent of the corresponding eigenvalue. Next, we prove that edge residuals dominate the volumetric part of the residual and that the volumetric part of the residual terms dominate the normal component of the jumps of the discrete fluxes across interior edges. Finally, based on these results, we introduce two simpler equivalent error estimators. The analysis shows that these a posteriori error estimates are optimal up to higher order terms and that may be used for the design of adaptive algorithms.Facultad de Ciencias Exactas2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf4100-4117http://sedici.unlp.edu.ar/handle/10915/84137enginfo:eu-repo/semantics/altIdentifier/issn/0898-1221info:eu-repo/semantics/altIdentifier/doi/10.1016/j.camwa.2011.09.061info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:48:24Zoai:sedici.unlp.edu.ar:10915/84137Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:48:24.594SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems |
title |
A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems |
spellingShingle |
A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems Dello Russo, Anahí Matemática A posteriori error estimates Nonconforming finite element methods Steklov eigenvalue problem |
title_short |
A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems |
title_full |
A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems |
title_fullStr |
A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems |
title_full_unstemmed |
A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems |
title_sort |
A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems |
dc.creator.none.fl_str_mv |
Dello Russo, Anahí Alonso, Ana Esther |
author |
Dello Russo, Anahí |
author_facet |
Dello Russo, Anahí Alonso, Ana Esther |
author_role |
author |
author2 |
Alonso, Ana Esther |
author2_role |
author |
dc.subject.none.fl_str_mv |
Matemática A posteriori error estimates Nonconforming finite element methods Steklov eigenvalue problem |
topic |
Matemática A posteriori error estimates Nonconforming finite element methods Steklov eigenvalue problem |
dc.description.none.fl_txt_mv |
This paper deals with a posteriori error estimators for the non conforming CrouzeixRaviart finite element approximations of the Steklov eigenvalue problem. First, we define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove the equivalence between this estimator and the broken energy norm of the error with constants independent of the corresponding eigenvalue. Next, we prove that edge residuals dominate the volumetric part of the residual and that the volumetric part of the residual terms dominate the normal component of the jumps of the discrete fluxes across interior edges. Finally, based on these results, we introduce two simpler equivalent error estimators. The analysis shows that these a posteriori error estimates are optimal up to higher order terms and that may be used for the design of adaptive algorithms. Facultad de Ciencias Exactas |
description |
This paper deals with a posteriori error estimators for the non conforming CrouzeixRaviart finite element approximations of the Steklov eigenvalue problem. First, we define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove the equivalence between this estimator and the broken energy norm of the error with constants independent of the corresponding eigenvalue. Next, we prove that edge residuals dominate the volumetric part of the residual and that the volumetric part of the residual terms dominate the normal component of the jumps of the discrete fluxes across interior edges. Finally, based on these results, we introduce two simpler equivalent error estimators. The analysis shows that these a posteriori error estimates are optimal up to higher order terms and that may be used for the design of adaptive algorithms. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/84137 |
url |
http://sedici.unlp.edu.ar/handle/10915/84137 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0898-1221 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.camwa.2011.09.061 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 4100-4117 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260359496335360 |
score |
13.13397 |