A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems

Autores
Dello Russo, Anahí; Alonso, Ana Esther
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper deals with a posteriori error estimators for the non conforming CrouzeixRaviart finite element approximations of the Steklov eigenvalue problem. First, we define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove the equivalence between this estimator and the broken energy norm of the error with constants independent of the corresponding eigenvalue. Next, we prove that edge residuals dominate the volumetric part of the residual and that the volumetric part of the residual terms dominate the normal component of the jumps of the discrete fluxes across interior edges. Finally, based on these results, we introduce two simpler equivalent error estimators. The analysis shows that these a posteriori error estimates are optimal up to higher order terms and that may be used for the design of adaptive algorithms.
Facultad de Ciencias Exactas
Materia
Matemática
A posteriori error estimates
Nonconforming finite element methods
Steklov eigenvalue problem
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/84137

id SEDICI_c1263dc18ad861204cb8d32dc71f3dcb
oai_identifier_str oai:sedici.unlp.edu.ar:10915/84137
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problemsDello Russo, AnahíAlonso, Ana EstherMatemáticaA posteriori error estimatesNonconforming finite element methodsSteklov eigenvalue problemThis paper deals with a posteriori error estimators for the non conforming CrouzeixRaviart finite element approximations of the Steklov eigenvalue problem. First, we define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove the equivalence between this estimator and the broken energy norm of the error with constants independent of the corresponding eigenvalue. Next, we prove that edge residuals dominate the volumetric part of the residual and that the volumetric part of the residual terms dominate the normal component of the jumps of the discrete fluxes across interior edges. Finally, based on these results, we introduce two simpler equivalent error estimators. The analysis shows that these a posteriori error estimates are optimal up to higher order terms and that may be used for the design of adaptive algorithms.Facultad de Ciencias Exactas2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf4100-4117http://sedici.unlp.edu.ar/handle/10915/84137enginfo:eu-repo/semantics/altIdentifier/issn/0898-1221info:eu-repo/semantics/altIdentifier/doi/10.1016/j.camwa.2011.09.061info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:48:24Zoai:sedici.unlp.edu.ar:10915/84137Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:48:24.594SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems
title A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems
spellingShingle A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems
Dello Russo, Anahí
Matemática
A posteriori error estimates
Nonconforming finite element methods
Steklov eigenvalue problem
title_short A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems
title_full A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems
title_fullStr A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems
title_full_unstemmed A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems
title_sort A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems
dc.creator.none.fl_str_mv Dello Russo, Anahí
Alonso, Ana Esther
author Dello Russo, Anahí
author_facet Dello Russo, Anahí
Alonso, Ana Esther
author_role author
author2 Alonso, Ana Esther
author2_role author
dc.subject.none.fl_str_mv Matemática
A posteriori error estimates
Nonconforming finite element methods
Steklov eigenvalue problem
topic Matemática
A posteriori error estimates
Nonconforming finite element methods
Steklov eigenvalue problem
dc.description.none.fl_txt_mv This paper deals with a posteriori error estimators for the non conforming CrouzeixRaviart finite element approximations of the Steklov eigenvalue problem. First, we define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove the equivalence between this estimator and the broken energy norm of the error with constants independent of the corresponding eigenvalue. Next, we prove that edge residuals dominate the volumetric part of the residual and that the volumetric part of the residual terms dominate the normal component of the jumps of the discrete fluxes across interior edges. Finally, based on these results, we introduce two simpler equivalent error estimators. The analysis shows that these a posteriori error estimates are optimal up to higher order terms and that may be used for the design of adaptive algorithms.
Facultad de Ciencias Exactas
description This paper deals with a posteriori error estimators for the non conforming CrouzeixRaviart finite element approximations of the Steklov eigenvalue problem. First, we define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove the equivalence between this estimator and the broken energy norm of the error with constants independent of the corresponding eigenvalue. Next, we prove that edge residuals dominate the volumetric part of the residual and that the volumetric part of the residual terms dominate the normal component of the jumps of the discrete fluxes across interior edges. Finally, based on these results, we introduce two simpler equivalent error estimators. The analysis shows that these a posteriori error estimates are optimal up to higher order terms and that may be used for the design of adaptive algorithms.
publishDate 2011
dc.date.none.fl_str_mv 2011
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/84137
url http://sedici.unlp.edu.ar/handle/10915/84137
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0898-1221
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.camwa.2011.09.061
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
4100-4117
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260359496335360
score 13.13397