Asymptotic estimates for the largest volume ratio of a convex body
- Autores
- Galicer, Daniel Eric; Merzbacher, Diego Mariano; Pinasco, Damian
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The largest volume ratio of a given convex body K ⊂ Rn is defined as lvr(K) := sup L⊂Rn vr(K, L), where the sup runs over all the convex bodies L. We prove the following sharp lower bound: c √n ≤ lvr(K), for every body K (where c > 0 is an absolute constant). This result improves the former best known lower bound, of order n/log log(n). We also study the exact asymptotic behaviour of the largest volume ratio for some natural classes. In particular, we show that lvr(K) behaves as the square root of the dimension of the ambient space in the following cases: if K is the unit ball of an unitary invariant norm in Rd×d (e.g., the unit ball of the p-Schatten class Sd p for any 1 ≤ p ≤ ∞), if K is the unit ball of the full/symmetric tensor product of p-spaces endowed with the projective or injective norm, or if K is unconditional.
Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Merzbacher, Diego Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Pinasco, Damian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina - Materia
-
VOLUME RATIO
RANDOM POLYTOPES
UNCONDITIONAL CONVEX BODIES
SCHATTEN CLASES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/154848
Ver los metadatos del registro completo
id |
CONICETDig_8eb43bfcc970752d4d94754c1cd376c7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/154848 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Asymptotic estimates for the largest volume ratio of a convex bodyGalicer, Daniel EricMerzbacher, Diego MarianoPinasco, DamianVOLUME RATIORANDOM POLYTOPESUNCONDITIONAL CONVEX BODIESSCHATTEN CLASEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The largest volume ratio of a given convex body K ⊂ Rn is defined as lvr(K) := sup L⊂Rn vr(K, L), where the sup runs over all the convex bodies L. We prove the following sharp lower bound: c √n ≤ lvr(K), for every body K (where c > 0 is an absolute constant). This result improves the former best known lower bound, of order n/log log(n). We also study the exact asymptotic behaviour of the largest volume ratio for some natural classes. In particular, we show that lvr(K) behaves as the square root of the dimension of the ambient space in the following cases: if K is the unit ball of an unitary invariant norm in Rd×d (e.g., the unit ball of the p-Schatten class Sd p for any 1 ≤ p ≤ ∞), if K is the unit ball of the full/symmetric tensor product of p-spaces endowed with the projective or injective norm, or if K is unconditional.Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Merzbacher, Diego Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Pinasco, Damian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; ArgentinaEuropean Mathematical Society2021-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/154848Galicer, Daniel Eric; Merzbacher, Diego Mariano; Pinasco, Damian; Asymptotic estimates for the largest volume ratio of a convex body; European Mathematical Society; Revista Matematica Iberoamericana; 37; 6; 3-2021; 1-260213-2230CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ems-ph.org/journals/show_abstract.php?issn=0213-2230&vol=37&iss=6&rank=9info:eu-repo/semantics/altIdentifier/doi/10.4171/rmi/1263info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1901.00771info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.1901.00771info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:01:22Zoai:ri.conicet.gov.ar:11336/154848instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:01:22.702CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Asymptotic estimates for the largest volume ratio of a convex body |
title |
Asymptotic estimates for the largest volume ratio of a convex body |
spellingShingle |
Asymptotic estimates for the largest volume ratio of a convex body Galicer, Daniel Eric VOLUME RATIO RANDOM POLYTOPES UNCONDITIONAL CONVEX BODIES SCHATTEN CLASES |
title_short |
Asymptotic estimates for the largest volume ratio of a convex body |
title_full |
Asymptotic estimates for the largest volume ratio of a convex body |
title_fullStr |
Asymptotic estimates for the largest volume ratio of a convex body |
title_full_unstemmed |
Asymptotic estimates for the largest volume ratio of a convex body |
title_sort |
Asymptotic estimates for the largest volume ratio of a convex body |
dc.creator.none.fl_str_mv |
Galicer, Daniel Eric Merzbacher, Diego Mariano Pinasco, Damian |
author |
Galicer, Daniel Eric |
author_facet |
Galicer, Daniel Eric Merzbacher, Diego Mariano Pinasco, Damian |
author_role |
author |
author2 |
Merzbacher, Diego Mariano Pinasco, Damian |
author2_role |
author author |
dc.subject.none.fl_str_mv |
VOLUME RATIO RANDOM POLYTOPES UNCONDITIONAL CONVEX BODIES SCHATTEN CLASES |
topic |
VOLUME RATIO RANDOM POLYTOPES UNCONDITIONAL CONVEX BODIES SCHATTEN CLASES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The largest volume ratio of a given convex body K ⊂ Rn is defined as lvr(K) := sup L⊂Rn vr(K, L), where the sup runs over all the convex bodies L. We prove the following sharp lower bound: c √n ≤ lvr(K), for every body K (where c > 0 is an absolute constant). This result improves the former best known lower bound, of order n/log log(n). We also study the exact asymptotic behaviour of the largest volume ratio for some natural classes. In particular, we show that lvr(K) behaves as the square root of the dimension of the ambient space in the following cases: if K is the unit ball of an unitary invariant norm in Rd×d (e.g., the unit ball of the p-Schatten class Sd p for any 1 ≤ p ≤ ∞), if K is the unit ball of the full/symmetric tensor product of p-spaces endowed with the projective or injective norm, or if K is unconditional. Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Merzbacher, Diego Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Pinasco, Damian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina |
description |
The largest volume ratio of a given convex body K ⊂ Rn is defined as lvr(K) := sup L⊂Rn vr(K, L), where the sup runs over all the convex bodies L. We prove the following sharp lower bound: c √n ≤ lvr(K), for every body K (where c > 0 is an absolute constant). This result improves the former best known lower bound, of order n/log log(n). We also study the exact asymptotic behaviour of the largest volume ratio for some natural classes. In particular, we show that lvr(K) behaves as the square root of the dimension of the ambient space in the following cases: if K is the unit ball of an unitary invariant norm in Rd×d (e.g., the unit ball of the p-Schatten class Sd p for any 1 ≤ p ≤ ∞), if K is the unit ball of the full/symmetric tensor product of p-spaces endowed with the projective or injective norm, or if K is unconditional. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/154848 Galicer, Daniel Eric; Merzbacher, Diego Mariano; Pinasco, Damian; Asymptotic estimates for the largest volume ratio of a convex body; European Mathematical Society; Revista Matematica Iberoamericana; 37; 6; 3-2021; 1-26 0213-2230 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/154848 |
identifier_str_mv |
Galicer, Daniel Eric; Merzbacher, Diego Mariano; Pinasco, Damian; Asymptotic estimates for the largest volume ratio of a convex body; European Mathematical Society; Revista Matematica Iberoamericana; 37; 6; 3-2021; 1-26 0213-2230 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.ems-ph.org/journals/show_abstract.php?issn=0213-2230&vol=37&iss=6&rank=9 info:eu-repo/semantics/altIdentifier/doi/10.4171/rmi/1263 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1901.00771 info:eu-repo/semantics/altIdentifier/doi/10.48550/arXiv.1901.00771 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
European Mathematical Society |
publisher.none.fl_str_mv |
European Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842979944426110976 |
score |
12.993085 |