Inconsistencies in unstructured geometric volume-of-fluid methods for two-phase flows with high density ratios
- Autores
- Liu, Jun; Tolle, Tobias; Zuzio, Davide; Estivalèzes, Jean-Luc; Marquez Damian, Santiago; Maric, Tomislav
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Geometric flux-based Volume-of-Fluid (VOF) methods (Marić et al., 2020) are widely considered consistent in handling two-phase flows with high density ratios. However, although the conservation of mass and momentum is consistent for two-phase incompressible single-field Navier–Stokes equations without phase-change (Liu et al., 2023), discretization may easily introduce inconsistencies that result in very large errors or catastrophic failure. We apply the consistency conditions derived for the LENT unstructured Level Set/Front Tracking method (Liu et al., 2023) to flux-based geometric VOF methods (Marić et al., 2020), and implement our discretization into the plicRDF-isoAdvector geometrical VOF method (Roenby et al., 2016). We find that computing the mass flux by scaling the geometrically computed fluxed phase-specific volume can ensure equivalence between the mass conservation equation and the phase indicator (volume conservation) if consistent discretization schemes are chosen for the temporal and convective term. Based on the analysis of discretization errors, we suggest a consistent combination of the temporal discretization scheme and the interpolation scheme for the momentum convection term. We confirm the consistency by solving an auxiliary mass conservation equation with a geometrical calculation of the face-centered density (Liu et al., 2023). We prove the equivalence between these two approaches mathematically and verify and validate their numerical stability for density ratios within [1, 10^6] and viscosity ratios within [10^2, 10^5].
Fil: Liu, Jun. Universitat Technische Darmstadt; Alemania
Fil: Tolle, Tobias. Universitat Technische Darmstadt; Alemania
Fil: Zuzio, Davide. Université de Toulouse; Francia
Fil: Estivalèzes, Jean-Luc. Université de Toulouse; Francia
Fil: Marquez Damian, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Maric, Tomislav. Universitat Technische Darmstadt; Alemania - Materia
-
Volume-of-fluid
Unstructured
Finite volume
High density ratios - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/258328
Ver los metadatos del registro completo
id |
CONICETDig_08fc71ab68caf54c3562d1cae0f76457 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/258328 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Inconsistencies in unstructured geometric volume-of-fluid methods for two-phase flows with high density ratiosLiu, JunTolle, TobiasZuzio, DavideEstivalèzes, Jean-LucMarquez Damian, SantiagoMaric, TomislavVolume-of-fluidUnstructuredFinite volumeHigh density ratioshttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2Geometric flux-based Volume-of-Fluid (VOF) methods (Marić et al., 2020) are widely considered consistent in handling two-phase flows with high density ratios. However, although the conservation of mass and momentum is consistent for two-phase incompressible single-field Navier–Stokes equations without phase-change (Liu et al., 2023), discretization may easily introduce inconsistencies that result in very large errors or catastrophic failure. We apply the consistency conditions derived for the LENT unstructured Level Set/Front Tracking method (Liu et al., 2023) to flux-based geometric VOF methods (Marić et al., 2020), and implement our discretization into the plicRDF-isoAdvector geometrical VOF method (Roenby et al., 2016). We find that computing the mass flux by scaling the geometrically computed fluxed phase-specific volume can ensure equivalence between the mass conservation equation and the phase indicator (volume conservation) if consistent discretization schemes are chosen for the temporal and convective term. Based on the analysis of discretization errors, we suggest a consistent combination of the temporal discretization scheme and the interpolation scheme for the momentum convection term. We confirm the consistency by solving an auxiliary mass conservation equation with a geometrical calculation of the face-centered density (Liu et al., 2023). We prove the equivalence between these two approaches mathematically and verify and validate their numerical stability for density ratios within [1, 10^6] and viscosity ratios within [10^2, 10^5].Fil: Liu, Jun. Universitat Technische Darmstadt; AlemaniaFil: Tolle, Tobias. Universitat Technische Darmstadt; AlemaniaFil: Zuzio, Davide. Université de Toulouse; FranciaFil: Estivalèzes, Jean-Luc. Université de Toulouse; FranciaFil: Marquez Damian, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Maric, Tomislav. Universitat Technische Darmstadt; AlemaniaPergamon-Elsevier Science Ltd2024-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/258328Liu, Jun; Tolle, Tobias; Zuzio, Davide; Estivalèzes, Jean-Luc; Marquez Damian, Santiago; et al.; Inconsistencies in unstructured geometric volume-of-fluid methods for two-phase flows with high density ratios; Pergamon-Elsevier Science Ltd; Computers & Fluids; 281; 8-2024; 1-230045-7930CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S004579302400207Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compfluid.2024.106375info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:22:14Zoai:ri.conicet.gov.ar:11336/258328instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:22:14.712CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Inconsistencies in unstructured geometric volume-of-fluid methods for two-phase flows with high density ratios |
title |
Inconsistencies in unstructured geometric volume-of-fluid methods for two-phase flows with high density ratios |
spellingShingle |
Inconsistencies in unstructured geometric volume-of-fluid methods for two-phase flows with high density ratios Liu, Jun Volume-of-fluid Unstructured Finite volume High density ratios |
title_short |
Inconsistencies in unstructured geometric volume-of-fluid methods for two-phase flows with high density ratios |
title_full |
Inconsistencies in unstructured geometric volume-of-fluid methods for two-phase flows with high density ratios |
title_fullStr |
Inconsistencies in unstructured geometric volume-of-fluid methods for two-phase flows with high density ratios |
title_full_unstemmed |
Inconsistencies in unstructured geometric volume-of-fluid methods for two-phase flows with high density ratios |
title_sort |
Inconsistencies in unstructured geometric volume-of-fluid methods for two-phase flows with high density ratios |
dc.creator.none.fl_str_mv |
Liu, Jun Tolle, Tobias Zuzio, Davide Estivalèzes, Jean-Luc Marquez Damian, Santiago Maric, Tomislav |
author |
Liu, Jun |
author_facet |
Liu, Jun Tolle, Tobias Zuzio, Davide Estivalèzes, Jean-Luc Marquez Damian, Santiago Maric, Tomislav |
author_role |
author |
author2 |
Tolle, Tobias Zuzio, Davide Estivalèzes, Jean-Luc Marquez Damian, Santiago Maric, Tomislav |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Volume-of-fluid Unstructured Finite volume High density ratios |
topic |
Volume-of-fluid Unstructured Finite volume High density ratios |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Geometric flux-based Volume-of-Fluid (VOF) methods (Marić et al., 2020) are widely considered consistent in handling two-phase flows with high density ratios. However, although the conservation of mass and momentum is consistent for two-phase incompressible single-field Navier–Stokes equations without phase-change (Liu et al., 2023), discretization may easily introduce inconsistencies that result in very large errors or catastrophic failure. We apply the consistency conditions derived for the LENT unstructured Level Set/Front Tracking method (Liu et al., 2023) to flux-based geometric VOF methods (Marić et al., 2020), and implement our discretization into the plicRDF-isoAdvector geometrical VOF method (Roenby et al., 2016). We find that computing the mass flux by scaling the geometrically computed fluxed phase-specific volume can ensure equivalence between the mass conservation equation and the phase indicator (volume conservation) if consistent discretization schemes are chosen for the temporal and convective term. Based on the analysis of discretization errors, we suggest a consistent combination of the temporal discretization scheme and the interpolation scheme for the momentum convection term. We confirm the consistency by solving an auxiliary mass conservation equation with a geometrical calculation of the face-centered density (Liu et al., 2023). We prove the equivalence between these two approaches mathematically and verify and validate their numerical stability for density ratios within [1, 10^6] and viscosity ratios within [10^2, 10^5]. Fil: Liu, Jun. Universitat Technische Darmstadt; Alemania Fil: Tolle, Tobias. Universitat Technische Darmstadt; Alemania Fil: Zuzio, Davide. Université de Toulouse; Francia Fil: Estivalèzes, Jean-Luc. Université de Toulouse; Francia Fil: Marquez Damian, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina Fil: Maric, Tomislav. Universitat Technische Darmstadt; Alemania |
description |
Geometric flux-based Volume-of-Fluid (VOF) methods (Marić et al., 2020) are widely considered consistent in handling two-phase flows with high density ratios. However, although the conservation of mass and momentum is consistent for two-phase incompressible single-field Navier–Stokes equations without phase-change (Liu et al., 2023), discretization may easily introduce inconsistencies that result in very large errors or catastrophic failure. We apply the consistency conditions derived for the LENT unstructured Level Set/Front Tracking method (Liu et al., 2023) to flux-based geometric VOF methods (Marić et al., 2020), and implement our discretization into the plicRDF-isoAdvector geometrical VOF method (Roenby et al., 2016). We find that computing the mass flux by scaling the geometrically computed fluxed phase-specific volume can ensure equivalence between the mass conservation equation and the phase indicator (volume conservation) if consistent discretization schemes are chosen for the temporal and convective term. Based on the analysis of discretization errors, we suggest a consistent combination of the temporal discretization scheme and the interpolation scheme for the momentum convection term. We confirm the consistency by solving an auxiliary mass conservation equation with a geometrical calculation of the face-centered density (Liu et al., 2023). We prove the equivalence between these two approaches mathematically and verify and validate their numerical stability for density ratios within [1, 10^6] and viscosity ratios within [10^2, 10^5]. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/258328 Liu, Jun; Tolle, Tobias; Zuzio, Davide; Estivalèzes, Jean-Luc; Marquez Damian, Santiago; et al.; Inconsistencies in unstructured geometric volume-of-fluid methods for two-phase flows with high density ratios; Pergamon-Elsevier Science Ltd; Computers & Fluids; 281; 8-2024; 1-23 0045-7930 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/258328 |
identifier_str_mv |
Liu, Jun; Tolle, Tobias; Zuzio, Davide; Estivalèzes, Jean-Luc; Marquez Damian, Santiago; et al.; Inconsistencies in unstructured geometric volume-of-fluid methods for two-phase flows with high density ratios; Pergamon-Elsevier Science Ltd; Computers & Fluids; 281; 8-2024; 1-23 0045-7930 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S004579302400207X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compfluid.2024.106375 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614213174034432 |
score |
13.070432 |