Inconsistencies in unstructured geometric volume-of-fluid methods for two-phase flows with high density ratios

Autores
Liu, Jun; Tolle, Tobias; Zuzio, Davide; Estivalèzes, Jean-Luc; Marquez Damian, Santiago; Maric, Tomislav
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Geometric flux-based Volume-of-Fluid (VOF) methods (Marić et al., 2020) are widely considered consistent in handling two-phase flows with high density ratios. However, although the conservation of mass and momentum is consistent for two-phase incompressible single-field Navier–Stokes equations without phase-change (Liu et al., 2023), discretization may easily introduce inconsistencies that result in very large errors or catastrophic failure. We apply the consistency conditions derived for the LENT unstructured Level Set/Front Tracking method (Liu et al., 2023) to flux-based geometric VOF methods (Marić et al., 2020), and implement our discretization into the plicRDF-isoAdvector geometrical VOF method (Roenby et al., 2016). We find that computing the mass flux by scaling the geometrically computed fluxed phase-specific volume can ensure equivalence between the mass conservation equation and the phase indicator (volume conservation) if consistent discretization schemes are chosen for the temporal and convective term. Based on the analysis of discretization errors, we suggest a consistent combination of the temporal discretization scheme and the interpolation scheme for the momentum convection term. We confirm the consistency by solving an auxiliary mass conservation equation with a geometrical calculation of the face-centered density (Liu et al., 2023). We prove the equivalence between these two approaches mathematically and verify and validate their numerical stability for density ratios within [1, 10^6] and viscosity ratios within [10^2, 10^5].
Fil: Liu, Jun. Universitat Technische Darmstadt; Alemania
Fil: Tolle, Tobias. Universitat Technische Darmstadt; Alemania
Fil: Zuzio, Davide. Université de Toulouse; Francia
Fil: Estivalèzes, Jean-Luc. Université de Toulouse; Francia
Fil: Marquez Damian, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Maric, Tomislav. Universitat Technische Darmstadt; Alemania
Materia
Volume-of-fluid
Unstructured
Finite volume
High density ratios
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/258328

id CONICETDig_08fc71ab68caf54c3562d1cae0f76457
oai_identifier_str oai:ri.conicet.gov.ar:11336/258328
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Inconsistencies in unstructured geometric volume-of-fluid methods for two-phase flows with high density ratiosLiu, JunTolle, TobiasZuzio, DavideEstivalèzes, Jean-LucMarquez Damian, SantiagoMaric, TomislavVolume-of-fluidUnstructuredFinite volumeHigh density ratioshttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2Geometric flux-based Volume-of-Fluid (VOF) methods (Marić et al., 2020) are widely considered consistent in handling two-phase flows with high density ratios. However, although the conservation of mass and momentum is consistent for two-phase incompressible single-field Navier–Stokes equations without phase-change (Liu et al., 2023), discretization may easily introduce inconsistencies that result in very large errors or catastrophic failure. We apply the consistency conditions derived for the LENT unstructured Level Set/Front Tracking method (Liu et al., 2023) to flux-based geometric VOF methods (Marić et al., 2020), and implement our discretization into the plicRDF-isoAdvector geometrical VOF method (Roenby et al., 2016). We find that computing the mass flux by scaling the geometrically computed fluxed phase-specific volume can ensure equivalence between the mass conservation equation and the phase indicator (volume conservation) if consistent discretization schemes are chosen for the temporal and convective term. Based on the analysis of discretization errors, we suggest a consistent combination of the temporal discretization scheme and the interpolation scheme for the momentum convection term. We confirm the consistency by solving an auxiliary mass conservation equation with a geometrical calculation of the face-centered density (Liu et al., 2023). We prove the equivalence between these two approaches mathematically and verify and validate their numerical stability for density ratios within [1, 10^6] and viscosity ratios within [10^2, 10^5].Fil: Liu, Jun. Universitat Technische Darmstadt; AlemaniaFil: Tolle, Tobias. Universitat Technische Darmstadt; AlemaniaFil: Zuzio, Davide. Université de Toulouse; FranciaFil: Estivalèzes, Jean-Luc. Université de Toulouse; FranciaFil: Marquez Damian, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Maric, Tomislav. Universitat Technische Darmstadt; AlemaniaPergamon-Elsevier Science Ltd2024-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/258328Liu, Jun; Tolle, Tobias; Zuzio, Davide; Estivalèzes, Jean-Luc; Marquez Damian, Santiago; et al.; Inconsistencies in unstructured geometric volume-of-fluid methods for two-phase flows with high density ratios; Pergamon-Elsevier Science Ltd; Computers & Fluids; 281; 8-2024; 1-230045-7930CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S004579302400207Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compfluid.2024.106375info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:22:14Zoai:ri.conicet.gov.ar:11336/258328instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:22:14.712CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Inconsistencies in unstructured geometric volume-of-fluid methods for two-phase flows with high density ratios
title Inconsistencies in unstructured geometric volume-of-fluid methods for two-phase flows with high density ratios
spellingShingle Inconsistencies in unstructured geometric volume-of-fluid methods for two-phase flows with high density ratios
Liu, Jun
Volume-of-fluid
Unstructured
Finite volume
High density ratios
title_short Inconsistencies in unstructured geometric volume-of-fluid methods for two-phase flows with high density ratios
title_full Inconsistencies in unstructured geometric volume-of-fluid methods for two-phase flows with high density ratios
title_fullStr Inconsistencies in unstructured geometric volume-of-fluid methods for two-phase flows with high density ratios
title_full_unstemmed Inconsistencies in unstructured geometric volume-of-fluid methods for two-phase flows with high density ratios
title_sort Inconsistencies in unstructured geometric volume-of-fluid methods for two-phase flows with high density ratios
dc.creator.none.fl_str_mv Liu, Jun
Tolle, Tobias
Zuzio, Davide
Estivalèzes, Jean-Luc
Marquez Damian, Santiago
Maric, Tomislav
author Liu, Jun
author_facet Liu, Jun
Tolle, Tobias
Zuzio, Davide
Estivalèzes, Jean-Luc
Marquez Damian, Santiago
Maric, Tomislav
author_role author
author2 Tolle, Tobias
Zuzio, Davide
Estivalèzes, Jean-Luc
Marquez Damian, Santiago
Maric, Tomislav
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Volume-of-fluid
Unstructured
Finite volume
High density ratios
topic Volume-of-fluid
Unstructured
Finite volume
High density ratios
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Geometric flux-based Volume-of-Fluid (VOF) methods (Marić et al., 2020) are widely considered consistent in handling two-phase flows with high density ratios. However, although the conservation of mass and momentum is consistent for two-phase incompressible single-field Navier–Stokes equations without phase-change (Liu et al., 2023), discretization may easily introduce inconsistencies that result in very large errors or catastrophic failure. We apply the consistency conditions derived for the LENT unstructured Level Set/Front Tracking method (Liu et al., 2023) to flux-based geometric VOF methods (Marić et al., 2020), and implement our discretization into the plicRDF-isoAdvector geometrical VOF method (Roenby et al., 2016). We find that computing the mass flux by scaling the geometrically computed fluxed phase-specific volume can ensure equivalence between the mass conservation equation and the phase indicator (volume conservation) if consistent discretization schemes are chosen for the temporal and convective term. Based on the analysis of discretization errors, we suggest a consistent combination of the temporal discretization scheme and the interpolation scheme for the momentum convection term. We confirm the consistency by solving an auxiliary mass conservation equation with a geometrical calculation of the face-centered density (Liu et al., 2023). We prove the equivalence between these two approaches mathematically and verify and validate their numerical stability for density ratios within [1, 10^6] and viscosity ratios within [10^2, 10^5].
Fil: Liu, Jun. Universitat Technische Darmstadt; Alemania
Fil: Tolle, Tobias. Universitat Technische Darmstadt; Alemania
Fil: Zuzio, Davide. Université de Toulouse; Francia
Fil: Estivalèzes, Jean-Luc. Université de Toulouse; Francia
Fil: Marquez Damian, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Maric, Tomislav. Universitat Technische Darmstadt; Alemania
description Geometric flux-based Volume-of-Fluid (VOF) methods (Marić et al., 2020) are widely considered consistent in handling two-phase flows with high density ratios. However, although the conservation of mass and momentum is consistent for two-phase incompressible single-field Navier–Stokes equations without phase-change (Liu et al., 2023), discretization may easily introduce inconsistencies that result in very large errors or catastrophic failure. We apply the consistency conditions derived for the LENT unstructured Level Set/Front Tracking method (Liu et al., 2023) to flux-based geometric VOF methods (Marić et al., 2020), and implement our discretization into the plicRDF-isoAdvector geometrical VOF method (Roenby et al., 2016). We find that computing the mass flux by scaling the geometrically computed fluxed phase-specific volume can ensure equivalence between the mass conservation equation and the phase indicator (volume conservation) if consistent discretization schemes are chosen for the temporal and convective term. Based on the analysis of discretization errors, we suggest a consistent combination of the temporal discretization scheme and the interpolation scheme for the momentum convection term. We confirm the consistency by solving an auxiliary mass conservation equation with a geometrical calculation of the face-centered density (Liu et al., 2023). We prove the equivalence between these two approaches mathematically and verify and validate their numerical stability for density ratios within [1, 10^6] and viscosity ratios within [10^2, 10^5].
publishDate 2024
dc.date.none.fl_str_mv 2024-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/258328
Liu, Jun; Tolle, Tobias; Zuzio, Davide; Estivalèzes, Jean-Luc; Marquez Damian, Santiago; et al.; Inconsistencies in unstructured geometric volume-of-fluid methods for two-phase flows with high density ratios; Pergamon-Elsevier Science Ltd; Computers & Fluids; 281; 8-2024; 1-23
0045-7930
CONICET Digital
CONICET
url http://hdl.handle.net/11336/258328
identifier_str_mv Liu, Jun; Tolle, Tobias; Zuzio, Davide; Estivalèzes, Jean-Luc; Marquez Damian, Santiago; et al.; Inconsistencies in unstructured geometric volume-of-fluid methods for two-phase flows with high density ratios; Pergamon-Elsevier Science Ltd; Computers & Fluids; 281; 8-2024; 1-23
0045-7930
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S004579302400207X
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compfluid.2024.106375
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614213174034432
score 13.070432